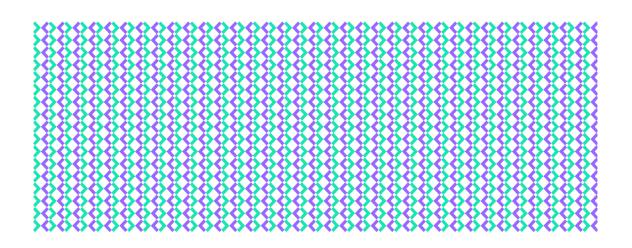


European Common Energy Data Space Framework Enabling Data Sharing - Driven Across – and Beyond – Energy Services

enershare.eu



Publication details

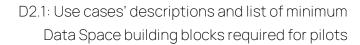
Grant Agreement Number 101069831

Acronym	ENERSHARE
Full Title	European Common Energy Data Space Framework Enabling Data Sharing-Driven Across — and Beyond — Energy Services
Topic	HORIZON-CL5-2021-D3-01-01 'Establish the grounds for a common European energy data space'
Funding scheme	HORIZON-IA: Innovation Action
Start Date	Jul 1, 2022
Duration	36 months
Project URL	<u>enershare.eu</u>
Project Coordinator	Engineering
Deliverable	D2.1 – Use cases' descriptions and list of minimum Data Space building blocks required for pilots
Work Package	WP2 - Requirements, user stories capitalisation and Energy Data Space design
Delivery Month (DoA)	M8
Version	1.0
Actual Delivery Date	April 24, 2023
Nature	Report

Dissemination Level	SEN/PU
Lead Beneficiary	Fraunhofer
Authors	Volker Berkhout (FhG), Linda Rülicke (FhG), Marie Eberhard (FhG)
Quality Reviewer(s)	Eric Suignard (EDF), Caterina Sarno, Diego Arnone (ENG)
Keywords	Use Case description, IEC 62559-2, requirements analysis, data space; building blocks

Document History

Ver.	Date	Description	Author	Partner
0.1	Nov 9,2022	ToC	Volker Berkhout	FhG
0.2	Nov 9,2022	Final ToC	Linda Rülicke, Volker Berkhout	FhG
0.5	Jan 31, 2023	First draft	Linda Rülicke, Volker Berkhout	FhG
0.6	Feb 22, 2023	Complete draft	Linda Rülicke, Volker Berkhout	FhG
0.8	Mar 1, 2023	Reviewed	WP 2 partner	
0.9	Mar 16, 2023	Release Candidate	Linda Rülicke, Volker Berkhout	FhG
0.9.2	Mar 30, 2023	First Quality Review	Eric Suignard	EDF
0.9.3	April 5, 2023	Second Quality Review	Caterina Sarno and Diego Arnone	ENG
1.0	Apr 24, 2023	Final version	Linda Rülicke, Volker Berkhout	FhG


Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the CINEA nor the European Commission is responsible for any use that may be made of the information contained therein.

1	Intr	oduction	20
	1.1	About the project	20
	1.2	About this document	20
	1.3	Intended audience	21
	1.4	Reading recommendations	22
2	Met	thod	23
	2.1	Use case description process	23
	2.2	Deriving building blocks from use cases	23
3	Use	e case descriptions	25
	3.1	Main resources for the description of use cases	25
	3.1.	1 Data Value Chain	25
	3.1.2	2 IEC 62559-2 Use case description template	26
	3.1.3	Harmonised Electricity Market Role Model (HEMRM)	28
	3.1.4	4 International Data Space reference architecture	29
	3.1.	5 EU taxonomy compass	32
	3.2	Use case short descriptions	33
	3.2. opt	P1-ES: Wind farm integrated predictive maintenance and supply chimization	air 34
	3.2. ope	2 P2-PT-A: Leveraging on consumer-level load data to improve TS erational and planning procedures.	0's 35
	3.2. bus	3 P2-PT-B Instantiation of energy communities and digital simulation siness models	of 36
	3.2. sen	4 P2-PT-C Detect irregularities in energy consumption in households water living alone	ith 38
	3.2.	5 P2-PT-D Suggest maintenance of appliances based on NILM data	38
	3.2.	6 P3-SI Optimal multi-energy vector planning - electricity vs heat	39
	3.2.	7 P4-GR Digital Twin for optimal data-driven Power-to-Gas planning	40
	3.2.	8 P5-IT-A Cross-sector Flexibility Services for aggregators and DSO	41
	3.2.	9 P5-IT-B Services for e-mobility CPOs, EVs drivers and DSO	42

	3.2.10 predicti	P5-IT-C Flexibility provision for electricity grid with water ve maintenance of the pumps	pumps and 43
	3.2.11	P7-LV Cross-value chain services for energy-data driven green f	inancing 44
	3.3 Sur	nmary of use cases	45
	3.3.1	Topics covered	45
	3.3.2	Roles and organisations	46
	3.3.3	Information items	48
<u>/</u>	Data Sp	ace Building Blocks	50
	4.1 Cat	regories for data space building blocks	50
	4.1.1 T	echnical	51
	4.1.1.1	Interoperability	51
	4.1.1.2	? Trust	51
	4.1.1.3	Data Value	52
	4.1.1.4	Additional technical building blocks	52
	4.1.2	Governance	54
	4.1.3	Organisational and Operational	54
	4.1.4	Business	55
	4.2 List	of required minimum data space building blocks	56
	4.2.1	Technical	60
	4.2.2	Governance	60
	4.2.3	Organisational / Operational	61
	4.2.4	Business	61
	4.2.5	Summary	61
5	Conclus	sions	62
ŝ	Referen	ces	64
7	Append	ix	65
	7.1 Pilo chain opti	t 1 - Use Case 1 - Wind farm integrated predictive maintenance mization	e and supply 66
	7.1.1 D	escription of the Use Case	66

7.1.	1.1	Name of the use case	66
7.1.	1.2	Version management	66
7.1.	1.3	Scope and objectives of use case	66
7.1.	1.4	Narrative of Use Case	67
7.1.	1.5	Key performance indicators (KPI)	68
7.1.	1.6	Use case conditions	69
7.1.	1.7	Further information to the use case for classification / mapping	70
7.1.2	Dia	grams of use case	71
7.1.3	Ted	chnical details	71
7.1.	3.1	Actors	71
7.1.	3.2	References	76
7.1.4	Ste	ep by step analysis of use case	76
7.1.	4.1	Overview of scenarios	76
7.1.	4.2	Steps-Scenarios	76
7.1.5	Info	ormation exchanged	77
7.1.6	F	Requirements	78
7.1.7	Co	mmon terms and definitions	79
		2 – Use Case 2a – Leveraging on consumer-level load data to improv	
operation	onal	and planning procedures.	81
7.2.1	Des	scription of the Use Case	81
7.2.	1.1	Name of the use case	81
7.2.	1.2	Version management	81
7.2.	1.3	Scope and objectives of use case	81
7.2.	1.4	Narrative of Use Case	82
7.2.	1.5	Key performance indicators (KPI)	84
7.2.	1.6	Use case conditions	85
7.2.	1.7	Further information to the use case for classification / mapping	85
7.2.2		Diagrams of use case	86

7.2.3 Technical details	86
7.2.3.1 Actors	86
7.2.3.2 References	89
7.2.4 Step by step analysis of use case	89
7.2.4.1 Overview of scenarios	89
7.2.4.2 Steps-Scenarios	90
7.2.5 Information exchanged	92
7.2.6 Requirements	93
7.2.7 Common terms and definitions	94
7.3 Pilot 2 – Use Case 2b – Instantiation of energy commof business models	nunities and digital simulation 95
7.3.1 Description of the Use Case	95
7.3.1.1 Name of the use case	95
7.3.1.2 Version management	95
7.3.1.3 Scope and objectives of use case	95
7.3.1.4 Narrative of Use Case	96
7.3.1.5 Key performance indicators (KPI)	99
7.3.1.6 Use case conditions	100
7.3.1.7 Further information to the use case for class	ification / mapping 100
7.3.2 Diagrams of use case	101
7.3.3 Technical details	101
7.3.3.1 Actors	101
7.3.3.2 References	104
7.3.4 Step by step analysis of use case	105
7.3.4.1 Overview of scenarios	105
7.3.4.2 Steps-Scenarios	106
7.3.5 Information exchanged	110
7.3.6 Requirements	111

7.3.7		Common terms and definitions	114
		2 – Use Case 2c - Detect irregularities in energy consumption in hou	
with se	niors	s living alone	116
7.4.1	De:	scription of the Use Case	116
7.4	.1.1	Name of the use case	116
7.4	.1.2	Version management	116
7.4	.1.3	Scope and objectives of use case	116
7.4	.1.4	Narrative of Use Case	116
7.4	.1.5	Key performance indicators (KPI)	117
7.4	.1.6	Use case conditions	117
7.4	.1.7	Further information to the use case for classification / mapping	118
7.4.2		Diagrams of use case	118
7.4.3	Т	echnical details	119
7.4	.3.1	Actors	119
7.4	.3.2	References	121
7.4.4	S	Step by step analysis of use case	122
7.4	.4.1	Overview of scenarios	122
7.4	.4.2	Steps-Scenarios	122
7.4.5	lı	nformation exchanged	123
7.4.6	F	Requirements	123
7.4.7		Common terms and definitions	124
	Pilot 26	2 – Use Case 2d – Suggest maintenance of appliances based on N	LM data
7.5.1	De:	scription of the Use Case	126
7.5	.1.1	Name of the use case	126
7.5	.1.2	Version management	126
7.5	.1.3	Scope and objectives of use case	126
7.5	.1.4	Narrative of Use Case	126
7.5	.1.5	Key performance indicators (KPI)	127

7.5.1.6 Use case conditions	127
7.5.1.7 Further information to the use case for classification / mapping	127
7.5.2 Diagrams of use case	127
7.5.3 Technical details	128
7.5.3.1 Actors	128
7.5.3.2 References	131
7.5.4 Step by step analysis of use case	131
7.5.4.1 Overview of scenarios	131
7.5.4.2 Steps-Scenarios	131
7.5.5 Information exchanged	132
7.5.6 Requirements	133
7.5.7 Common terms and definitions	133
7.6 Pilot 3 – Use Case 3 – Optimal multi-energy vector planning - electricity 134	vs heat
7.6.1 Description of the Use Case	134
7.6.1.1 Name of the use case	134
7.6.1.2 Version management	134
7.6.1.3 Scope and objectives of use case	134
7.6.1.4 Narrative of Use Case	135
7.6.1.5 Key performance indicators (KPI)	136
7.6.1.6 Use case conditions	136
7.6.1.7 Further information to the use case for classification / mapping	136
7.6.2 Diagrams of use case	137
7.6.3 Technical details	137
7.6.3.1 Actors	137
7.6.3.2 References	139
7.6.4 Step by step analysis of use case	140
7.6.4.1 Overview of scenarios	140

7.6.4.2 Steps-Scenarios	140
7.6.5 Information exchanged	142
7.6.6 Requirements	142
7.6.7 Common terms and definitions	142
7.7 Pilot 4 – Use Case 4 – Digital Twin for optimal data-driven Power-to-Gas p 144	lanning
7.7.1 Description of the Use Case	144
7.7.1.1 Name of the use case	144
7.7.1.2 Version management	144
7.7.1.3 Scope and objectives of use case	144
7.7.1.4 Narrative of Use Case	145
7.7.1.5 Key performance indicators (KPI)	145
7.7.1.6 Use case conditions	146
7.7.1.7 Further information to the use case for classification / mapping	146
7.7.2 Diagrams of use case	146
7.7.3 Technical details	147
7.7.3.1 Actors	147
7.7.3.2 References	149
7.7.4 Step by step analysis of use case	151
7.7.4.1 Overview of scenarios	151
7.7.4.2 Steps-Scenarios	152
7.7.5 Information exchanged	155
7.7.6 Requirements	155
7.7.7 Common terms and definitions	156
7.8 Pilot 5 – Use Case 5a – Cross-sector Flexibility Services for aggregators a 158	nd DSC
7.8.1 Description of the Use Case	158
7.8.1.1 Name of the use case	158
7.8.1.2 Version management	158

7.8.1.3 Scope and objectives of use case	158
7.8.1.4 Narrative of Use Case	159
7.8.1.5 Key performance indicators (KPI)	159
7.8.1.6 Use case conditions	160
7.8.1.7 Further information to the use case for classification / mappin	g 160
7.8.2 Diagrams of use case	160
7.8.3 Technical details	161
7.8.3.1 Actors	161
7.8.3.2 References	164
7.8.4 Step by step analysis of use case	164
7.8.4.1 Overview of scenarios	164
7.8.4.2 Steps-Scenarios	165
7.8.5 Information exchanged	166
7.8.6 Requirements	166
7.8.7 Common terms and definitions	168
7.9 Pilot 5 - Use Case 5b - Services for e-mobility CPOs, EVs drivers and	DSO 169
7.9.1 Description of the Use Case	169
7.9.1.1 Name of the use case	169
7.9.1.2 Version management	169
7.9.1.3 Scope and objectives of use case	169
7.9.1.4 Narrative of Use Case	169
7.9.1.5 Key performance indicators (KPI)	170
7.9.1.6 Use case conditions	170
7.9.1.7 Further information to the use case for classification / mapping	g 171
7.9.2 Diagrams of use case	171
7.9.3 Technical details	172
7.9.3.1 Actors	172
7.9.3.2 References	175

7.9.4	Step by step analysis of use case	175
7.9.4	.1 Overview of scenarios	175
7.9.4	.2 Steps-Scenarios	177
7.9.5	Information exchanged	180
7.9.6	Requirements	181
7.9.7	Common terms and definitions	182
	ot 5 – Use Case 5c – Flexibility provision for electricity grid with water p ctive maintenance of the pumps	umps 184
7.10.1	Description of the Use Case	184
7.10.1	1.1 Name of the use case	184
7.10.1	1.2 Version management	184
7.10.1	1.3 Scope and objectives of use case	184
7.10.1	1.4 Narrative of Use Case	185
7.10.1	I.5 Key performance indicators (KPI)	185
7.10.1	I.6 Use case conditions	185
7.10.1	1.7 Further information to the use case for classification / mapping	185
7.10.2	Diagrams of use case	186
7.10.3	Technical details	187
7.10.3	3.1 Actors	187
7.10.3	3.2 References	189
7.10.4	Step by step analysis of use case	190
7.10.4	4.1 Overview of scenarios	190
7.10.4	4.2 Steps-Scenarios	190
7.10.5	Information exchanged	193
7.10.6	Requirements	193
7.10.7	Common terms and definitions	194
7.11 Pilo	ot 6	195
7.12 Pilo	ot 7 - Use case 7 - Cross-value chain services for energy-data driven	green 196

7.12.1	Des	scription of the Use Case	196
7.12.1.	1	Name of the use case	196
7.12.1.	2	Version management	196
7.12.1.	3	Scope and objectives of use case	196
7.12.1.4		Narrative of Use Case	
7.12.1.5 Key perfo		Key performance indicators (KPI)	197
7.12.1.6 Use case conditions		198	
7.12.1.	7	Further information to the use case for classification / mapping	198
7.12.2	Dia	grams of use case	199
7.12.3	Tec	chnical details	199
7.12.3	.1	Actors	199
7.12.3	.2	References	201
7.12.4	Ste	p by step analysis of use case	202
7.12.4	.1	Overview of scenarios	202
7.12.4	.2	Steps-Scenarios	202
7.12.5	Info	ormation exchanged	204
7.12.6	Rec	quirements	207
7.12.7	2.7 Common terms and definitions		208

List of Figures

Figure 1: Big data value chain (BDVA) [7]	26
Figure 2: International Data Space Reference Architecture [5]	29
Figure 3: Roles and interactions in the International Data [5], chapter 3.1.2]	30
Figure 4: Data spaces building blocks [1]	50

List of Tables

Design Principles for Data Spaces [1]	' '
Table 2: Exemplary description of roles from the harmonised electricity marke [4]	
Table 3: Overview of pilots and use cases in ENERSHARE	33
Table 4: Overview on number of organisations with HEMRM market roles in ENEF cases. (Organisations may be included in several use cases and count only fotal.)	or one in the
Table 5: Overview on combination of roles according to the harmonised electrole model and the IDSA reference architecture. Figures represent the organisations with HEMRM-Data Space role combination across use cases	number of
Table 6: Overview on overlapping data categories across use cases in ENERSH	ARE49
Table 7: Overview on specific overlapping information requirements across under the control of t	
Table 8: List of technical building blocks of data spaces with the number of scerequire these blocks	
Table 9: Building Blocks requirements by Use Case Scenarios	58

List of Acronyms

API	Application Programming Interface
BDVA	Big Data Value Association
CEC	Citizen Energy Communities
CPO	Charging Point Operator
DSO	District System Operator
DER	Distributed Energy Resources
EC	European Commission
EV	Electric Vehicle
GDPR	General Data Protection Regulation
HEMRM	Harmonized Electricity Market Role Model
IDSA	International Data Spaces Association
IEC	International Electrotechnical Comission
IM	Identity Management
IoT	Internet of Things
IoT KPI	Internet of Things Key Performance Indicator
	•
KPI	Key Performance Indicator
KPI	Key Performance Indicator Machine Learning

M&O	Operation & Maintenance
P2G	Power-to-Gas
PV	Photovoltaic
REC	Renewable Energy
RES	Renewable Energy Sources
RHFC	Regenerative Hydrogen Fuel Cells
RPF	Reverse Power Flows
SLA	Service Level Agreement
UC	Use Case
WME	Workflow Management Engine
WP	Work Package
XML	Extensible Markup Language

Executive summary

The ENERSHARE project has the objective to build the grounds for a European Energy Data Space. This is to be achieved by the implementation of demonstration use cases in six different pilots across Europe.

This deliverable summarises the work performed in task 2.1 which gathered information on the use cases to present use case descriptions in a standardised manner according to IEC-62559-2. This enabled a cross-use-case analysis. Based on these descriptions, the requirements for data space building blocks have been derived. The eleven use case descriptions form the main content of this document. They are presented with short textual descriptions in section 3.2. The annex consists of the full use IEC 62559-2-case templates which will also be uploaded to the smart-grid-use-case repository. Another pilot is subject to changes and will be presented in an updated version of this document.

From the overview of the use cases it may be concluded that within the ENERSHARE project there is a balanced mix of actors both from the energy market and technology perspective and also from the digital value chain perspective. Several cross-use case collaboration opportunities have been identified. A common approach to electricity metering data based on domain data standards has the largest overlap across use cases.

The building block list deduced from these descriptions reveal that there is a strong focus on data models and formats as well as on trusted data exchange including identity management and access and usage control mechanisms and policies. Across all use cases there is a generic need for governance building blocks to sustain the overall digital ecosystem in the mid- and long run. Nine use cases need to comply with regulation issues connected to personal user data according to the general data protection regulation (GDPR). Further requirements from energy system regulations and further legal and regulatory compliance are subject to work in taks 2.4. Organisational and operational issues such as service level agreement are being planned for use cases with higher maturity level. Business building blocks do seldom occur at this point but are expected to be further analysed in task 2.3

The content of this deliverable will serve as input to the development of the reference architecture in the ongoing work in work package 2 and will be used for the further development of the pilots in work package 9.

1 Introduction

1.1 About the project

ENERSHARE vision is to develop and demonstrate a European Common Energy Data Space, which will deploy an 'intra-energy' and 'cross-sector' interoperable and trusted Energy Data Ecosystem. Data Spaces are expected to set up a level playing field for data sharing and aim at creating a market for data to be shared efficiently and securely within EU, where private and public entities can fully control the use of the data they generate, and where both businesses and public sector have easy access to a large pool of high-quality data. Currently existing implementations of Data Space technological building blocks, in particular International Data Space Association (IDSA) building blocks, have not been validated against energy business scenarios or requirements.

ENERSHARE will provide a technological Reference Implementation for a Common European Data Space adapted to the energy sector, which leverages on, adapts, evolves, and validates Data Space architectures like IDSA and GAIA-X, as well as underlying open-source technological implementations for domain-agnostic data-oriented technology components.

1.2 About this document

This deliverable 2.1 titled "Use cases' descriptions and list of minimum Data Space building blocks required for pilots" summarises the description of all use cases planned within the ENERSHARE project and derives the required data space building blocks from it. The objective of this document is to collect all use case descriptions according to IEC standard 62559-2 [2] in one document and make them available for further technical planning in the further tasks and technical work packages.

Chapter 3 presents relevant resources which have been used to structure the content. It then presents short descriptions of the use cases in the project. Based on the descriptions, several analyses across use cases are provided in chapter 3. Use case descriptions are provided within the document in a short form in section 3.2 which includes the name, objective, short description and scenario overview. The full IEC-templates are listed in the annex with one section for each use case. These descriptions will be uploaded to the smart-grid-use-case-repository.

The summary of the use case descriptions includes an overview on the topics within the use cases with regard to EU taxonomy [3]. It further maps the roles and organisations involved from the perspective of the harmonised electricity market role model [4] to the role model by the International Data Space Association [5] to provide a matching between the energy and the digital value chain. An analysis on common needs on data models and overlap on information items within the use cases provides further insights for further work on the pilots and on semantic interoperability.

Chapter 4 starts with a short description on the data space building blocks as they have been described in the OPEN DEI whitepaper [1] and as they are understood and used in the project. The second part presents the list of required minimum data space building blocks.

Chapter 5 sums the content and findings up and provides conclusions, some interpretation, and an outlook.

The deliverable is linked to deliverable 9.1 on the pilot's preparation, measurement, and verification plan. It will serve as a living document that will integrate future updates and additions on the use case requirements which will be provided by task 2.2 on requirements with regard to the incentive design from the perspective of social science and humanities and from task 2.3 on the overall business concept design and functional specification. With these inputs it will form the input for the deliverable 2.3 with a first approach on the reference architecture for the project.

1.3 Intended audience

This deliverable is marked as public. The use case descriptions will also be uploaded to the smart grid use case repository. The intended audience for this deliverable is:

- Internal pilot partners for further development stages of use cases.
- Internal technical partners to inform about requirements as defined across use cases, especially to provide input on the following deliverable on the description of a reference architecture.
- External developers of further Energy Data Space projects in Europe to inform about the content and to enable the identification of topics of common interest.

It is important to note, that the description process raises functional requirements, but afterwards and during the architecture design and the software development process,

other requirements often emerge. Additional functional or non-functional requirements define expected performance (e.g. maximum response time) and drive the technical architecture and the testing process. All these further requirements should be integrated back into the use case descriptions.

1.4 Reading recommendations

This document is divided into 5 chapters and an extensive annex that include the detailed use case descriptions. Chapter 1 is this introduction. Chapter 2 provides information on the method applied for the work leading to this deliverable and is divided into a subsection on the use case description process and the deriving of the building blocks. Chapter 3 lists the short descriptions of use cases and provides summaries on topics, roles, and information items. Chapter 4 provides the building block list with further explanation on the building block categories.

It is recommended to make use of the table of content and navigate to specific parts of the use case descriptions in the annex that are of specific interest to the reader.

2 Method

2.1 Use case description process

The use cases of ENERSHARE are jointly documented using the IEC 62559 template [2]. In order to gather the necessary input for the template, the pilot partners were involved in a multi-step process. The first step to describe Use Cases is to have an initial interview with its pilot partners to gain a first impression of the Use Case. This includes the understanding of the pilots' general objectives, the individual companies' objectives, existing IT-Architectures that might be useful for the Use Case, perceived barriers and business and system roles in the pilot.

Afterwards, Fraunhofer formalized the interviews' insights by providing a first draft of the Use Case into the IEC 62559-2 template. This action also helped identifying issues for further discussions.

In an iterative process, during more workshops and interviews, the IEC 62559-2 Use Case Template were filled out: alignments with the Technical Management (Fraunhofer), WP 9 (data flows and KPIs) and Task 2.2 (social innovation) were made and the usage of action items helped to finalize the use case description.

Based upon this deliverable, T2.5 creates the Reference Architecture for the ENERSHARE data space and after the Use Case description is approved by all participating parties, it will be uploaded into the Use Case Repository.

2.2 Deriving building blocks from use cases

In addition to the standardised use case description, the objective of this deliverable is to provide a list of building blocks that will be required to implement the use cases within the pilot. The analysis looks at the functional level. Technological design choices will be taken at a later stage as part of the architectural tasks and deliverables.

The building blocks as described in the OpenDEI whitepaper "Design principles for Data Spaces" [1] form the basis for this work. The building blocks are separated into technical, governance, business and organisational or operational components. The full list includes a total of 27 building blocks.

Table 1: Categories of building blocks for data spaces as proposed in the Whitepaper Design Principles for Data Spaces [1]

Category	Building Block name	Category	Building Block name
	 Data Models and Formats Data Exchange APIs Provenance and traceability Identity Management Access and Usage control / Policies 	Business Building Blocks	 Service Level Agreement Accounting Scheme Billing / Charging Scheme Smart Contract
Technical Building Blocks	 Trusted Exchange Metadata and Discovery Protocol Data Usage Accounting Publication and Marketplace Services System Adaptation Data Processing Data Routing and Preprocessing Data Analytics Engine Data Visualisation Workflow Management Engine 	Governance Building Blocks	 Data Space Boards Overarching cooperation agreement Continuity Model Regulations
		Organisational Operational Building Blocks	 Unique Identifiers Authorisation Registry Trusted parties Domain Data Standard

The use case descriptions were analysed with regard to the specific scenarios, steps, information items and requirements to derive the building blocks list. For each use case scenario these description elements were investigated for their implication on the requirement of building blocks. The outcome of this analysis is a table with references to process steps, information items and requirements. The results are summarised and described in section 4.2.

3 Use case descriptions

3.1 Main resources for the description of use cases

During the process of use case description, different standards were used in order to provide a comparability of the different use cases. The guiding template for the documentation is the IEC 62559-2 Use Case description template. As the IEC 62559 is already widely used between different European projects like BRIDGE, ENERSHARE uses it as well to benefit on the standardized way to document the requirements of different projects in the European energy sector. To increase the reusability of the work done in this work package, all use cases will be uploaded as well to the Smart Grid Use Case repository [6].

To ensure a common understanding of the involved roles of the electricity market the Harmonized Electricity Market Role Model (HEMRM) is used. The role model presents common names of the electricity market, which are involved in an information exchange [4].

Additional to the electrical market view, a view on the data value chain is included as well, as ENERSHARE focusses mainly on the benefits of sharing data between multiple participants. For this view on the data value chain, the current reference architectures of the International Data Space Association is used [5].

3.1.1 Data Value Chain

With the increasing importance of digitalization in general, the efficient and automated handling and processing of data becomes essential to benefit from the economic potential of value creation from digital services.

Building on existing models on supply chain and value chain models from other industrial sectors, there are also models for value creation from data resources through digital processes. For this project we use the big data value chain as depicted in Figure 1 by the big data value association (BDVA).

Figure 1: Big data value chain (BDVA) [7]

This model starts with the generation and acquisition of data which is then processed in data analysis that generates value adding information. Data Storage and the curation of data resources is another part in the chain. The output is generated by providing the processed data or generated insights to the customer by means of visualisation of results or digital services in machine-to-machine communication.

Key stakeholders for the digital value chain are the vendors of the information and communication technology and the broad range of private and public users across different industrial sectors. Data entrepreneurs and R&D institutions will be actors that drive innovations which build on data demand and supply. [7]

3.1.2 IEC 62559-2 Use case description template

The IEC 62559-2 Use Case description template is designed by the International Electrotechnical Commission (IEC) [2], an international organization working with standardization. It relies on the IEC's use case methodology, which provides a common understanding of functionalities, actors and processes among different technical committees or organizations. It is created as a software engineering tool and the methodology can help with the development of standards since it simplifies the analysis of requirements considering new or existing standards. Furthermore, the use case methodology is divided into three parts: the first being IEC 62559-1, which comprises the concept and processes in standardization as the basis for a common use case repository. In addition, this repository serves the purpose of gathering use cases within the IEC on a collaborative platform in order to organize a harmonization of use cases. Therefore, generic use cases are provided to form the basis for further standardization work. Moreover, IEC 62559-1 offers the processes and basics for the use case methodology like terms or use case types.

The second part, IEC 62559-2, covers the definition of the templates for use cases, an actor, and a requirement list. This information also includes the structure of a use case template:

- 1. Description of the Use Case
 - 1. Name of the use case
 - 2. Version management
 - 3. Scope and objective of use case
 - 4. Narrative of use case
 - 5. Key performance indicators (KPI)
 - 6. Use case conditions
 - 7. Further information to the use case for classification / mapping
- 2. Diagrams of use case
- 3. Technical Details
 - 1. Actors
 - 2. References
- 4. Step by step analysis of the use case
 - 1. Overview of Scenarios
 - 2. Steps Scenarios
- 5. Information exchanged
- 6. Requirements
- 7. Common terms and definitions

IEC 62559-3, which forms the third part, is based on IEC 62559-2, and contains the required core concepts of a use case template, an actor list and a list for requirements transformed into an XML format. The purpose of this transformation is to be able to convert the content of the template to other engineering systems.

The initial intention for the IEC to create the use case methodology is to facilitate the management of system level requirements in more complex systems like Smart Grids or Smart Cities, but as it is written in a general manner, it can also be used in other domains. Furthermore, the system level requirements need to be provided with many domains of expertise as well as be broken down to facilitate the sharing of ideas and requirements of use cases and business cases among the Technical Committees which often have various backgrounds. The intention is to receive specifying standards that support system level functions. Domain experts, for example, provide general ideas and functional requirements, while system experts rather modify the use cases to be able to specify interfaces, dedicated functionality, data, and service model exchange. Moreover, the use

case methodology and its common methods and terms support further engineering activities.

Another intention for the use case methodology to be created is to set up a frame of consistency within the IEC so that the provision of use cases is made possible in a consistent manner and that the standards can serve as a basis for the use case repository for the gathering, administration, maintenance, and evaluation of use cases.

In general, the use case methodology is a process starting with the definition of business ideas, goals and requirements and putting those to detail in the use case description. Furthermore, it serves as a basis for the identification or link to a reference architecture, as it offers the description of which types of components need to be used and in a broader perspective to help with further standardization work. [2]

3.1.3 Harmonised Electricity Market Role Model (HEMRM)

The energy system has evolved in the past simultaneously in different countries. Therefore, different names for similar roles have evolved. In order to enable a better cross-country communication between different participants of the energy sector, the HEMRM was developed. It intends to give designated common names to the parties involved in information exchange in the energy sector. A single party or legal entity can take over multiple roles, but it would also be possible that each role is represented by a different party [4].

As an example, the following table shows two definitions of roles which are frequently used during the ENERSHARE Use Case description.

Table 2: Exemplary description of roles from the harmonised electricity market role model [4]

Role Name	Description
Market Information Aggregator	A party that provides market related information that has been compiled from the figures supplied by different actors in the market. This information may also be published or distributed for general use. Note: The Market Information Aggregator may receive information from any market participant that is relevant for publication or distribution

System Operator A party responsible for operating, ensuring the maintenance of and, if necessary, developing the system in a given area and, where applicable, its interconnections with other systems, and for ensuring the long-term ability of the system to meet reasonable demands for the distribution or transmission of electricity

3.1.4 International Data Space reference architecture

Additionally, to the energy system view displayed in the HEMRM model, the view on data is depicted in the Reference Architectures of the International Data Space Association.

The International Data Space Reference Architecture (IDS-RAM) consists of five layers to represent the different viewpoints of involved stakeholders. Additional to those five layers, three perspectives, Security, Certification and Governance, are incorporated. The perspectives need to be implemented within all of the layers and are therefore listed separately [5].

An overview of the layers and perspectives can be found in the graphic below:

International Data Spaces		
Layers	Perspectives	
Business		
Functional	rrity cation nance	
Process	Security	
Information	Se Cert Gov	
System		

Figure 2: International Data Space Reference Architecture [5]

For our purpose of the use case description, we will mainly focus on the business layer as this layer contains the necessary roles to describe the cases.

Similar to the HEMRM, the IDS RAM defines roles to generalize the activities of participants in an information exchange. Whereas the HEMRM focusses on the view of the energy

market, the IDS Ram puts a spotlight on the information exchange itself. The described roles are depicting the data value chain in a context of a data space. The IDSA distinguishes between basic rules, which shall help in the discussion of technical tasks in the IDS and business roles, which are suitable for a generic discussion of the data sharing in an early stage. Therefore, we focus on the business roles, but basic roles can be considered during complex use case scenarios. The business roles are clustered into four categories, which are Core Participant, Intermediary, Software Developer and Governance Body [5].

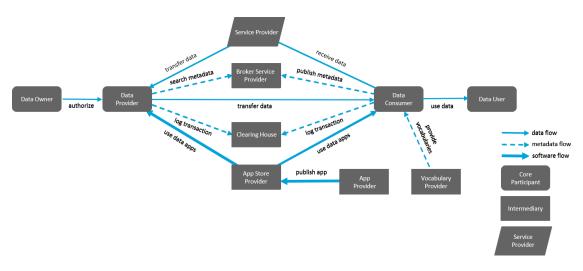


Figure 3: Roles and interactions in the International Data [5], chapter 3.1.2]

Core Participants

Roles from the category Core Participants are required for each data exchange conducted in a data space.

The business role Data Supplier is aggregating the three basic roles Data Creator, Data Owner, and Data Provider. This means that the role is able to create data, has the means to define usage policies and payment models and provides access to the data via the data space. [5]

The Data Customer receives the data from the Data Supplier. Basic roles subsumed under this business role are Data Consumer (data is sent directly), Service Consumer (data is processed by Service Provider upon reception) and Data User (legal entity that uses the data in accordance with usage policies) [5].

Intermediary

Intermediaries act as platforms for several Data Suppliers and Data Customers. They are trusted entities, which could provide a variety of services resulting in six business roles: Data Intermediary, Service Intermediary, App Store, Vocabulary Intermediary, Clearing House, and Identity Authority.

A Data Intermediary can either act on behalf of the basic role of a Data Provider or Data User. In this role he provides technical access to the Data Space to exchange data for his customer. Moreover, the Data Intermediary can be a Data Broker, providing metadata about different data offers to provide a service that increases the findability of offered data resources.

Similar to the Data Intermediary the Service Intermediary can either provide metadata about services or the service itself. A service processes data to increase the value or the quality of the data. Multiple services can be chained together to provide a complex and powerful process to interact with the data. If the Service Intermediary has not developed the offered service by himself but consumes it from a third-party app, he assumes the basic role of an App Consumer.

The App Store offers a variety of third-party algorithms, which can be downloaded to the connector of the app consumer and used in this location. In contrast to the activities of the Service Intermediary, the App Store cannot execute any apps on its platform.

In order to enable a common language and a common understanding between the participants of the Data Space vocabularies are used. The Vocabulary Intermediary provides and publishes vocabularies but does not own or govern those. This role will be taken over by a Standardization Organization.

To build a business model within a Data Space there needs to be clarity if a data transfer was completed successfully and could be billed accordingly. The task of logging all activities performed in the Data Space is done by the Clearing House.

To avoid unauthorized access to data the Identity Authority is an important role in the Data Space to secure that the participants interacting with each other, are who they claim to be [5].

Software Developer

Different domains have different requirements towards a Data Space. Therefore, enough flexibility should be given to adapt to domain specific situations. In order to fill this flexibility with useful functionality, IT companies provide software to Data Space users. There are two business roles in this category: the App Developer and the Connector Developer.

The App Developer develops apps that can be offered via the App Store and installed on the connector of the customer. The App will provide functionality to alter and process data.

In contrast to the App Developer the software developed by the Connector Developer will not be distributed by a Data Space entity but by the usual distribution channels. The connector represents the basic and most important element to participate in the dataspace as a Data Supplier or Data Customer [5].

Governance Body

The responsibility of a Governance Body is to provide rules and guidelines in order to achieve a standardization in the data exchange. The category contains the Certification Body and Evaluation Facilities as well as the Standardization Organisation.

The Certification Body provides with the help of the Evaluation Facilities certifications of participants on the one side and on the other side a technical certification for developed Apps, Connectors and Services.

The business role Standardization Organization fulfils the basic roles of Vocabulary Creator and Vocabulary Owner as most standards are typically described as a vocabulary or an ontology. The IDSA presents a special role as a Standardization Organization as it governs over the IDS-RAM but is not taking part in the actions of the different Data Spaces [5].

3.1.5 EU taxonomy compass

The EU Commission has introduced a taxonomy to classify economic activities according to their degree of environmental sustainability with the Delegated Act on the climate objectives [3]. As a tool for visual support, the EU Taxonomy Compass facilitates to access to the terms and structure of the taxonomy [8]. To further structure and compare the content of the use cases the activities from the taxonomy filtered for the Mitigation measures from the Energy sector have been used.

3.2 Use case short descriptions

The following chapter gives a short overview of the use cases of ENERSHARE. The detailed use case description according to the IEC 62559 template can be found in the Annex.

The following table gives an overview of the use cases in scope.

Table 3: Overview of pilots and use cases in ENERSHARE

Pilot	Use Case	Title
P1-ES		Wind farm integrated predictive maintenance and supply chain optimization
P2-PT	А	Leveraging on consumer-level load data to improve TSO's operational and planning procedures.
P2-PT	В	Instantiation of energy communities and digital simulation of business models
P2-PT	С	Detect irregularities in energy consumption in households with seniors living alone
P2-PT	D	Suggest maintenance of appliances based on NILM data
P3-SI		Optimal multi-energy vector planning - electricity vs heat
P4-GR		Digital Twin for optimal data-driven Power-to-Gas planning
P5-IT	А	Cross-sector Flexibility Services for aggregators and DSO
P5-IT	В	Services for e-mobility CPOs, EVs drivers and DSO
P5-IT	С	Flexibility provision for electricity grid with water pumps and predictive maintenance of the pumps
P6-		- Pilot is currently subject to change -
P7-LV		Cross-value chain services for energy-data driven green financing

For each use case a short description of the planned activities together with the planned objectives will be provided. Pilot 6 is currently subject to change. The use case description will be added after a final decision has been taken on its new scope in an updated version of this document.

3.2.1 P1-ES: Wind farm integrated predictive maintenance and supply chain optimization

Scope

This pilot aims to foster data driven innovation in the onshore and offshore wind energy industry, along its value chain, to maintain its competitive advantage and contribute to the decarbonisation of the economy.

Objectives

- (1) Design and development of an offshore wind digital platform (IDSA reference architecture and components included) as one of the core technologies, for enabling the federated data sharing and machine learning (ML) based services between data owners and data users.
- (2) Enrichment of the IDSA architecture's components with innovative solutions (IDSA connectors in the edge, edge computing, data-driven and Digital Twin based operation and maintenance (O&M) algorithms, synthetic failures data generation).
- (3) Creation of the most adequate business model for data monetisation.

Short Description

Windfarm owners and wind turbine Original Equipment Manufacturer (OEMs) have access to the data collected from the wind energy turbines in operation and they are the only players that are presently extracting value out of data at the top of the value chain. However, European components suppliers, ICT companies and ML service providers have difficulties to fully automatically access the data produced by the different systems in wind turbines in real-life operation. This fact causes certain limitations to extract full value out of data and to improve their competitiveness through digitalisation of products and services.

This pilot aims to foster data driven innovation in the onshore and offshore wind energy industry, along its value chain, to maintain its competitive advantage and contribute to the decarbonisation of the economy.

Scenario Overview

The use case consists of the following scenarios:

- 1) Anomaly detection using hybrid model (physics-based model + data-driven)
- 3.2.2 P2-PT-A: Leveraging on consumer-level load data to improve TSO's operational and planning procedures.

Scope

Using behind-the-meter data to improve operational and planning procedures of the Portuguese transmission system operator, using smart services from the Energy Data Space.

Objectives

The objective of this use-case (UC) is to assess the value of behind-the-meter (consumer-level) load data to the Transmission System Operators (TSOs) in improving operational and planning procedures, by taking advantage of the Energy Data Space ecosystem's advanced capabilities for data sharing. The ultimate goal of this UC is to quantify the improvement of well-established procedures for network planning and operation that TSOs are responsible to execute and translate it into the value – monetary and/or social – of the available behind-the-meter data.

The proposed analysis may be breakdown into four main topics to be addressed:

- Evaluate impact of using aggregated and individual consumer-level data, exploring federated learning, to improve net-load forecasting at the substation level.
- Evaluate the evolution of net-demand at the substation-level by using data on the typology/amount of load and generation (RES) at the end-consumer side. Assess whether this data unveils the need to refine TSOs' grid planning procedures, including the definition of additional scenarios to assure system stability and security.
- Track and quantify the aggregated demand-side flexibility potential of end-users
 (assuming an energy community configuration) and evaluate the potential for
 participation in the balancing markets for ancillary services provision (service
 managed by the TSO).
- Identification of opportunities for cross-sector synergies between electrical and gas demand at the consumer-level.

Short Description

This UC takes advantage of the Energy Data Space extended functionalities for safe data sharing to perform an evaluation of the value of the behind-the-meter data to the TSO in some of its operational and planning procedures. The UC will focus in using the consumption/generation data from energy communities' users to i) improve load forecasting at the substation level, ii) evaluate the evolution of load typology and respective impacts in the grid dimensioning, that may be fed-forward for refinements in the TSO's planning strategies; iii) track and quantify the aggregated flexibility potential at the energy communities level, that can be scaled-up to the system level e.g. through balancing services; iv) identification of potential for cross-sector synergies (electricity and gas) at the communities level.

Scenario Overview

The use case consists of the following scenarios:

- 1) Net-load forecast at substation-level
- 2) Analysis of the consumption evolution to improve grid planning
- 3) Flexibility estimation
- 4) Cross-sector opportunities

3.2.3 P2-PT-B Instantiation of energy communities and digital simulation of business models

Scope

Planning and business model assessment of renewable energy communities (REC) -Article 2 (16) Recast Renewable Energy Directive – and Citizen Energy Communities (CEC) - Article 2(11) Recast Internal Electricity Market Directive.

Objectives

The main goal is to explore the combinatorial value of data owned by different Data Owners (i.e., its cross-silo value) for optimal design of REC and/or CEC considering their economic feasibility, simulation of different assets ownership business models and integration of vulnerable citizens.

The following specific objectives are associated to primary use cases:

- 1) Sizing and economic evaluation of REC and/or CEC business models considering consumption and generation profiles available in the Data Space, as well as other data sources such as open market data (prices) and weather data, and the possibility of assets sharing models.
- 2) Given a specific REC/CEC structure (members and assets), simulate its operation to estimate the dispatch of the flexible resources and the resulting energy price for the internal transactions within the community, according to the business model selected, also considering the inclusion of vulnerable citizens in the community (e.g., alternative electricity tariff scheme, financial schemes for community sharing).
- 3) Extract approximated flexibility models for smart appliances (e.g., using non-intrusive load monitoring data), enabling an overall quantification of flexibility and estimation of energy savings from intelligent load control.

Short Description

The main actor of this use case is the Service Provider that receives data (consumption, generation, open weather measurements / forecasts, etc.) available in the Data Space (via Data Provider) to study and simulate different configurations and business models for REC and/or CEC. This includes the following functions: i) sizing of the distributed energy resources (DER) within the community, including the joint ownership of assets; ii) construction of flexibility models, with field data, for thermal loads; iii) simulation of pricing mechanisms within the community, considering the retailers' tariffs and flexibility from DER. This will enable economic feasibility analysis of energy communities, and to potentially engage vulnerable citizens, which can be identified by combining data collected from the residencies with external data (e.g., weather, average income, etc.), in energy trading / sharing activities under different business models. The benefit is to derisk investment in shared energy resources and maximize the benefits of new local energy communities.

Scenario Overview

The use case consists of the following scenarios:

- 1) DER sizing and economic evaluation of the REC / CEC business model
- 2) Estimation of flexibility potential and energy savings from thermal domestic loads
- 3) Simulation of energy price within the REC / CEC

3.2.4 P2-PT-C Detect irregularities in energy consumption in households with seniors living alone

Scope

Improve quality of living and energy consumption in the households of seniors living alone and provide alarm services to notify relatives or health care agents in case of a trigger event.

Objectives

Detect irregularities in energy consumption in households with seniors living alone

Short Description

Establish insurance and healthcare services for the community (and for the providers) by learning energy utilization patterns to recognize potential problems and trigger alarms. This aims mainly at senior citizens with reduced mobility or disability problems and do not have close assistance or conditions to call for help in case of need. The use case will also monitor changes in domestic environment (temperature, humidity, etc.), enabling an assessment of the impact on the current health status of the citizen.

Scenario Overview

The use case consists of the following scenarios:

1) Detection of irregularities in seniors' energy consumption

3.2.5 P2-PT-D Suggest maintenance of appliances based on NILM data

Scope

Improve quality of living and energy consumption in households by detecting higher energy consumptions of appliances early on and increase energy efficiency by suggesting maintenance or renewal of appliances.

Objectives

Use non-intrusive load monitoring (NILM) data to suggest maintenance of appliances or renewal (e.g. fridge)

Short Description

Use NILM data to detect appliance retrofit opportunities in private rental sector and social housing, taking into account the types of properties and socio-economic data. This information will be shared with consumers and housing providers.

Scenario Overview

The use case consists of the following scenarios:

1) NILM analysis for opportunities of maintenance or renewal of appliances

3.2.6 P3-SI Optimal multi-energy vector planning - electricity vs heat

Scope

The Energy-Climate Atlas platform constitutes a unique set of innovative methodological approaches and tools that enable cities, local communities, and energy system operators to take an important step forward in energy planning, reliable and secure supply and ensuring a high quality of life.

Objectives

- 1) Data aggregation, pre-processing, and visualisation in Energy-Climate Atlas
- 2) Data analytics for populating feature stores with measurement, contextual and behavioural data to profile, segment and cluster users according to corresponding services / engagement programmes
- 3) Flexibility potential assessment of the electric power system
- 4) Development of heat flexibility valorisation strategies across different actors while maintaining digital sovereignty
- 5) Planning of coordinated measures between district heating and electric power systems operators to secure demand and achieve climate goals

Short Description

The use case focuses on sector coupling between heat and electric power systems, which can be done through cogeneration or power-to-heat generation and storage. In the context of district heating and the use of technologies such as heat pumps and seasonal thermal storage, great potential can be seen for providing flexibility to the electric system.

However, to realise the full potential of thermal flexibility, close cooperation between all actors in a given geographic area of district heating and the logical clusters of users involved is required. In terms of infrastructure planning and assessment of flexibility potential, electricity and heat distribution network capacities must be geographically mapped along with photovoltaic, biomass, hydropower, and geothermal sources, while operation requires additional fine-grained profiling and segmentation of users, as well as technical means for managing distributed systems.

Scenario Overview

The use case consists of the following scenarios:

- (1) Flexibility assessment
- (2) Planning of measures

3.2.7 P4-GR Digital Twin for optimal data-driven Power-to-Gas planning

Scope

The aim of this pilot is to create a Digital Twin for optimal data-driven Power-to-Gas (P2G) planning. The P2G Digital Twin will model multiple scenarios for hydrogen production and storage from RES under different energy demand profiles. A first system will perform useful profiling, comparisons, and forecasts of the customers' demand and provide an understanding of the factors that influence the decision-making process for the use of natural gas and green hydrogen in the energy mix. A second system will create long-, midand short-term scenarios of the required green hydrogen production and renewable energy.

Objectives

The objective of the case study is to form a combined optimization platform, named TwinP2G, coupling the electricity transmission system with natural gas demands, leveraging a Digital Twin architecture that will enable multi-resolution simulations involving P2G technologies and (regenerative) hydrogen fuel cells. TwinP2G will enable data- and simulation-driven P2G and RHFC optimal planning leveraging RES surplus for green hydrogen production via electrolysis.

Short Description

Producing hydrogen from low-carbon energy is costly at the moment, and the development of hydrogen infrastructure is slow and holding back widespread adoption. Virtual environments are required to analyse different scenarios for a quicker and safer integration of hydrogen in the energy system. From renewable sources (such as wind and photovoltaic) to electrolyser capacity, to buffers (such as energy and hydrogen storage), multiple variables and data sources must be considered to meet the increased energy demand. In this respect, the technology of Data Spaces offers great potential for hydrogen promotion to accelerate the energy transition. In this direction, this pilot aims to develop a Digital Twin application for enabling the design of thorough P2G use cases in Greece in order to assess and optimize the several quantities related to P2G investments (e.g. electrolyser, buffer and fuel cells optimal capacity and locations).

Scenario Overview

The use case consists of the following scenarios:

- 1) Develop and evaluate an electricity only Digital Twin considering fuel cell technologies (short-term horizon)
- 2) Develop and evaluate an electricity only Digital Twin considering fuel cell technologies (long-term horizon)
- 3) Develop and evaluate a sector coupled Digital Twin (natural gas + electricity) (short-term horizon)
- 4) Develop and evaluate a sector coupled Digital Twin (natural gas + electricity) (long-term horizon)

3.2.8 P5-IT-A Cross-sector Flexibility Services for aggregators and DSO

Scope

Reduction of reverse power flows into the distribution grid through optimization of selfconsumption

Objectives

- Load forecast for household and primary substation and PV feed-in estimation
- Flexibility estimation for each household
- Reduce reverse power flow / Optimization of the grid and maximization of selfconsumption

- Security Services deployed by DSOs to Consumers
- App development
- User engagement incl. updating infrastructure based on the use case needs

Short Description

This UC aims to take advantage of the sources of flexibility offered by cross-sector to reduce Reverse Power Flows (RPF) into the power distribution grid and reduce the impact on distribution grid. Optimised grid management, which leads to increased self-consumption and self-sufficiency, reduced losses and detailed observability of parameters in real time, drastically reduces the number of faults that can occur on the grid. For end consumers, this leads to various advantages, such as greater continuity of supply, less environmental impact from their own consumption, greater awareness of their impact on the energy system and a drive towards active and more sustainable behaviour.

Scenario Overview

The use case consists of the following scenarios:

1) Variable demand response

3.2.9 P5-IT-B Services for e-mobility CPOs, EVs drivers and DSO

Scope

Value creation from flexibility provision of electric vehicles to the grid

Objectives

- Use the vehicles to provide flexibility to the grid and reduce grid congestion levels
- App development/adaption
- Increase CPO ability to attract EV users to their charging stations
- Increase CPO revenue
- Reduce charging session costs for EV users

Short Description

Prioritization of charging and/or parking slot availability in peak hours (e.g., in the night) for consumers sharing EV recharging profiles; dynamic parking pricing aligned to the grid congestion level for consumers who share their mobility patterns with the DSO.

Scenario Overview

The use case consists of the following scenarios:

- 1) Grid monitoring
- 2) Charging schedule notification
- 3) EV users involvement
- 4) Grid congestion problem avoided

3.2.10 P5-IT-C Flexibility provision for electricity grid with water pumps and predictive maintenance of the pumps

Scope

Exploiting new services for sustainable management of water distribution systems which are also beneficial for optimizing grid operations.

Objectives

- Increase the efficiency of the grid by using flexibility of the water network and water pumps
- Forecasting water demand variations using the real time data and historical data available

Short Description

In the morning when everyone gets ready for the day, the water consumption is high, in the night the water consumption decreases by 80 percent. That means at night pressure at the source can be reduced while still allowing customers to have sufficient tap pressure. Our water distribution network manages their operation on the instant water demand of the network, meaning that the use of the equipment is conditioned by the immediate water necessity. Water demand forecasting is crucial for the sustainable management of water distribution systems. It is directly related to a supply service with reduced operating costs, such as the electric energy required for pumping and plays an important role in the optimal performance of pumps. Water demand prediction is crucial to have optimal water demand balance, minimise overpressure and, consequently achieve water and energy savings.

Scenario Overview

The use case consists of the following scenarios:

- 1) Flexibility
- 2) Predictive Maintenance

3.2.11 P7-LV Cross-value chain services for energy-data driven green financing

Scope

Green financing for energy efficiency services for strengthening debt and equity financing of energy efficiency investments, providing investors and project developers the opportunity to easily evaluate key performance indicators of future projects. The scope of this use case stems from the need of providing innovative services which will be based on Data Spaces, counting on cross-value chain stakeholder data-driven services, at the interplay among smart meters data and financing.

Objectives

- Make the data from two financing schemes for renewable energy and energy efficiency calls available to the dataspace:
- Ministry of Environmental protection¹, Latvian environmental investment fund: EKII-6 (Call) Reducing greenhouse gas emissions from households support for the use of renewable energy sources
- Ministry of Economics*, Department of Energy Financial Instruments, programs (2) for the renovation of one-apartment residential houses and two-apartment residential houses and for increasing energy efficiency and solar PV installation
- Automatically anonymize data in order to use it compliantly
- Calculate cost efficiency KPIs to allow consumers to calculate their return on invest and energy savings
- Forecast energy production if the RES technology is installed
- Integrate analysis results into the homepage of the Ministry of Energy and climate in the form of an app with the aim to raise awareness of the households of the

¹ Departments from the Ministry of Environmental protection and Ministry of Economics are planned to be merged creating the Ministry of Energy and climate.

energy efficiency actions and RES technology instalment possibilities as well as do the initial assessment if the households want to apply for support programs.

Short Description

The aim of this pilot is to create a solid framework through cross-sectoral integration of data on financial performance of energy efficiency projects. The scope is to strengthen debt and equity financing of energy efficiency investments, providing investors and project developers the opportunity to easily evaluate key performance indicators of future projects. Besides traditional Al-based green financing analytics services, in the context of this pilot the evaluation of energy data sharing to other sectors and the exploitation of how this pilot concept should evolve to become a more generic data sharing solution will be further investigated.

Scenario Overview

The use case consists of the following scenarios:

- 1) Anonymization
- 2) PV forecast
- 3) Cost and energy efficiency calculation

3.3 Summary of use cases

Within this section we provide an overview across all use case descriptions. Based on the scope of use cases, we show which topics are being addressed in the project. Then the actors and roles from the energy market perspective and from the data space role model are mapped to each other. Finally, the information items that are being planned within the use cases have been analysed in order to identify focus areas and overlaps.

3.3.1 Topics covered

The use cases described in the ENERSHARE project range over different sectors, focusing on different aspects of the energy system. The EU taxonomy compass [8] underlying the Delegated Act on the climate objectives [3] has been used to map the topics in the EU use cases to the relevant activities planned.

Activities on electricity transmission and distribution will be addressed in seven use cases, often in combination with flexibility services provided to the grid system operators. PV generation will be relevant to three use cases. As pilots 3 and 4 address the system

planning level across several energy sectors including heat and / or gas they span a broad range of activities.

The following table gives an overview:

Activity number	Activity name	P1-ES	P2-PT-A	P2-PT-B	P2-PT-C	P2-PT-D	P3-SI	P4-GR	P5-IT-A	P5-IT-B	P5-IT-C	P7-LV	Total
4.1	Solar photovoltaics			1					1			1	3
4.3	Wind power	1											1
4.9	Transmission and distribution		1				1	1	1	1	1		6
4.10	Storage of electricity		1	1			1	1					4
4.11	Storage of thermal energy						1					1	2
4.12	Storage of hydrogen							1					1
4.14	Transmission and distribution networks for gases							1					1
4.15	District heating/cooling						1						1
4.16	Electric heat pumps			1			1						2
4.17- 4.20	Cogeneration of heat/cool and power						1						1
4.21	Solar thermal heating											1	1
4.22	Geothermal energy						1					1	2
4.23	Heat/cool from renewable non-fossil gaseous and liquid fuels							1				1	2
4.29	Electricity generation from fossil gaseous fuels							1					1

3.3.2 Roles and organisations

With respect to the electricity system the use cases in ENERSHARE include actors that represent a broad variety of roles in the HEMRM model. From the data space perspective, the main business roles of data suppliers, service intermediaries and data customers are covered.

Table 4 provides an overview on the market roles of the organisations in each use case. Energy Service Companies are occurring most often across the use cases as they provide digital services and act as data consumers. Aggregators for market information, resources

and metered data are providing data for these services. The system operators act both as data provider and consumers, e.g., in communicating their need for flexibility and consuming the data on available flexibility potential as a service. The list of market roles also includes the consumer who also acts as data provider and consumer of data and services.

Table 4: Overview on number of organisations with HEMRM market roles in ENERSHARE use cases. (Organisations may be included in several use cases and count only for one in the total.)

Market Role (HEMRM 2022)	P1-ES	P2-PT-A	P2-PT-B	P2-PT-C	P2-PT-D	P3-SI	P4-GR	P5-IT-A	P5-IT-B	P5-IT-C	P7-LV	Total
Energy Service Company	3		1			1	1			1	1	7
System Operator		1				2	1	1	1	1		5
Market Information Aggregator		1		1	1						1	2
Producer	1					1						2
Consumer			1					1	1		1	1
Resource Provider									1			1
Ressource Aggregator								1				1
Balancing Service Party												
Metered Data Aggregator								1				1
Total	3	2	2	1	1	4	2	2	3	1	3	17

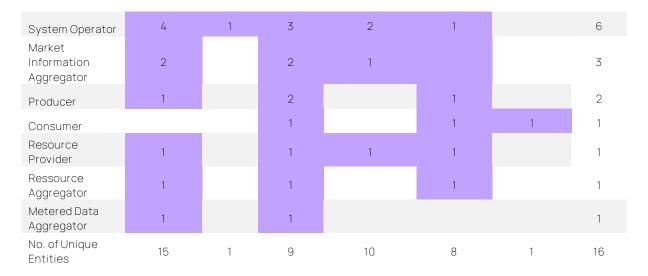

In Table 5 a quantitative analysis of HEMRM-Data Space role combinations is provided. The figures are based on the number of organisations within the ENERSHARE consortium and their respective combination of roles.

Table 5: Overview on combination of roles according to the harmonised electricity market role model and the IDSA reference architecture. Figures represent the number of organisations with HEMRM- Data Space role combination across use cases

				Service			
		Datas	Supplier	Intermediary	Data Cı	ustomer	
Market Role (HEMRM 2022)	Connector User	Data Owner	Data Provider	Service Provider	Data Consumer	Service Consumer	Unique Entities
Energy Service Company	7			7	4		7

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

3.3.3 Information items

Based on the use case description template for the pilots the information items required for all use cases in ENERSHARE have been analysed to identify focus areas and overlaps in requirements.

Table 6 shows categories for data that were clustered from the individual entries and the number of items that have been mentioned across all pilots. Data being listed for a use case means that information from this category will be required for a use case. It does not mean that this data will be publicly available.

Data on electricity consumption is the most prevalent category across the use cases. Data on consumers is also frequently mentioned but varies widely in its specifics. The same is true for economic data which often includes price or cost information and assumptions for calculation. Furthermore, it includes outcomes and recommendations from predictive maintenance services.

Further data that will be required for several use cases include weather and environmental data and data on flexibilities. E-Mobility and building data have strong and detailed needs in the pilots P5 and P7.

Table 6: Overview on overlapping data categories across use cases in ENERSHARE

Information Category	P1-ES	P2-PT-A	P2-PT-B	P2-PT-C	P2-PT-D	P3-SI	P4-GR	P5-IT-A	P5-IT-B	P5-IT-C	P7-LV	Total
Electricity Consumption		3	1	4	2	1	3	3	7	1	2	27
Consumer Data		2	12	5				1	2		4	26
EMobility									16			16
Building Data			3								14	17
Economic Data	2		9		3				1	1	1	17
Flexibility		3	3			3				2		11
Generation asset data	4		1			1		1			2	9
other data			1			1	5					7
Environment			1	2		1					2	6
Grid Data						1	1	3				5
Natural Gas		1					2					3

Table 7 lists identical information needs from different use cases. Access to meter data will be necessary for 6 use cases. Flexibility potential will be determined and exchanged in four use cases in pilots 2, 3 and 5. Data from load forecasts will be required in four cases. Predictive maintenance services are planned in three pilots yet on different assets.

Table 7: Overview on specific overlapping information requirements across use cases in ENERSHARE

Information Category	P1-ES	P2-PT-A	P2-PT-B	P2-PT-C	P2-PT-D	P3-SI	P4-GR	P5-IT-A	P5-IT-B	P5-IT-C	P7-LV	Total
Meter Data		1	1			1		2	1		1	7
Predictive maintenance	2				3					1		6
Flexibility potential		1	1			2				2		6
Load Forecast		1					1	1	1			4
Grid Topology					_	1	1	1				3
Temperature				1							1	2
Production Forecast										1	1	2

4 Data Space Building Blocks

4.1 Categories for data space building blocks

Data spaces are being built by combining technical and organisational building blocks which enable the technical, business, operational and organizational capabilities. Not only are they an essential part of the data space's soft infrastructure but also a service building a data space within and across domains. Furthermore, some parts of the building blocks are essential to data spaces in general and can be found in multiple ones; others will have to be adapted individually for sector-specific data spaces [1].

The general building blocks include the technical and the governance building blocks. The former describes building blocks responsible for the technical architecture of data spaces and are further divided into interoperability, trust, and data value. The latter consider the general governance structure of the data space including overall business, operational

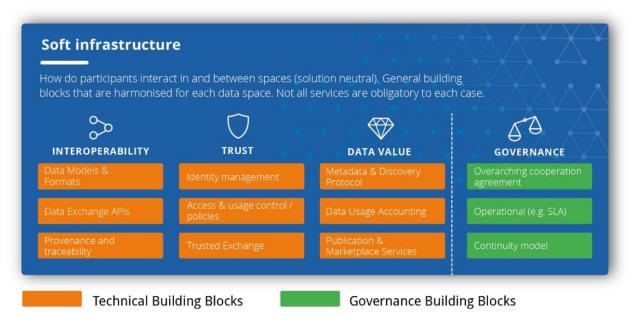


Figure 4: Data spaces building blocks [1]

and organizational agreements. Both will be described further in this chapter.

4.1.1 Technical

4.1.1.1 Interoperability

Interoperability among participants in a data space is essential to the access and provision of data. To facilitate the implementation of interoperability into a data space, three building blocks are defined: *Data Models and Formats* provide "a common format for data model specifications and representation of data in data exchange payloads" [1].

In order to ensure full interoperability between the data space's participants, the *Data Exchange APIs* building block needs to be implemented as well as it facilitates sharing and exchange of data between systems of data space participants. A common example for APIs is the FIWARE Context Broker.

The third building block facilitating interoperability is described as *Data Provenance and Traceability*, which includes the implementation of mechanisms that provide the tracking of data during the process of their provision and usage. Additionally, more important functions on the origins of data to audit-proof logging of transactions [1] as well as application level tracking of data are part of this building block.

4.1.1.2 Trust

To encourage actors to participate in a data space, it must provide mechanisms that ensure data sovereignty and trust. Data sovereignty is defined as "the capability of a natural person or corporate entity for exclusive self-determination with regard to its economic data goods", which leaves the data spaces' participants able to operate and control their data in the data space [1, p. 27].

The *Identity Management (IM)* building block helps enable data spaces to do so as it provides organisations, individuals, machines, and other actors operating in the data space with verified and authenticated identities. These include additional information that authorization mechanisms make use of to enable data access and usage control [1, p. 45].

Another building block ensuring trust among the data space and its participants is *Access* and *Usage Control / Policies*. Within this building block, data access and usage policies as part of the terms and conditions are guaranteed during the publication of data resources or services or negotiation between data providers and consumers. The misuse of resources and data is prevented by data access and data usage control mechanisms implemented by the data providers and consumers or combined in more complex data value chains by prosumers. This building block relies on the Identity Management building

block as identification and authentication are the basis for access and usage control [1, p. 46].

The third building block covers the aspect of *Trusted Exchange*. This tool ensures the identity and conformity with predefined rules and policies among the participants of a data space in order to secure data exchanges and transactions. This building block can be realized through technical or organizational measures [1, p. 46].

4.1.1.3 Data Value

Data as an economic asset need to be operated properly concerning the publication of data offerings, their discovery based on metadata, and data access/usage accounting (p.40). The building block *Metadata and Discovery Protocol* covers the publishing and discovery mechanisms for offerings of data resources and services as it covers the creation of common descriptions of resources, services, and participants, which can be domain-agnostic or -specific. Semantic-web technologies enable such descriptions and include linked-data principles. In an example, data space participants need to gain corresponding usage rights in order to access the wanted data asset [1, p. 46, 51].

Data usage accounting is a building block serving as the basis for accounting access to and/or the usage of data by different users of a data space. Furthermore, it encourages the use of mechanisms for clearing, payment, and billing as well as data-sharing transactions out of a market [1, p. 46, 51].

In addition, *Publication and Marketplace Services* are needed to offer data resources and services under specific terms and conditions. These services enable dynamic access and discovery as well as the process management linked to the creation and monitoring of smart contracts [1, p. 46, 51].

4.1.1.4 Additional technical building blocks

The building blocks mentioned in this chapter can be considered as an addition to the technical building blocks as they facilitate the creation of systems plugged into a data space.

The first building block considered as an addition to the Technical Building Blocks is the *System Adaptation*. This building block is responsible for the facilitation of the transfer of data to and from the data space and the participants' systems (i.e., database systems, data-processing systems, enterprise systems, cyber physical systems, IoT-enabled systems). To do so, it interfaces with data resources exported by the systems and

transforms the data formats in a way they can be exchanged within the data space, i.e., IoT protocols are a medium to interface with IoT resources, database protocols are needed to interface with databases, etc.

Data usage restrictions can be enforced with the help of the *Data processing* building block as shared data coming from systems that are connected to the data space through system adapters can be processed. Furthermore, technical solutions can accompany or substitute organizations' rules or legal contracts, but in return they increase the complexity of data usage control by data space providers or operators.

Another additional technical building block called *Data Routing and Preprocessing* refers to a dynamic form of data routing to the data-processing node. This building block is mostly a data middleware platform or a combination of several platforms working with different technical requirements according to the routed and collected data. Hence, stream-processing middleware platforms are helpful with the routing and pre-processing of streaming data. Not only technical aspects but also aspects for the compliance with data usage policies are included in this building block [1, pp. 47-48].

As a data space consists of different platforms that generate multiple data flows, the *Data Analytics Engine (DAE)* building block is required to support the synthesis and analysis of these data flows by applying methods like statistical analysis, machine learning and other techniques. This building block needs to be adapted to data characteristics involved [1, 48,52].

The *Data Visualization* building block is a tool that helps a data space offer presentation and visualisation features of its shared and exchanged data. This can take place in different forms that range from dashboards to augmented analytics. A data space in the finance sector, for example, might need to visualize credit scores and other parameters or participants; diagrams and figures can be presented using a dashboards created with the support of this building block [1, p. 48, 52].

When taking a look at data-processing use cases including the interaction of multiple data sources, data consumers, and data services, the *Workflow Management Engine (WME)* building block helps to ensure a proper organization and structure of those workflows (containing data extraction, transformation, and analysis, as well as data presentation and visualisation) [1, p. 48].

4.1.2 Governance

All business transactions are based on frameworks that include agreements among all actors in a data space.

The *Data Space Boards* building block comprises the governance for a data space considering decision-making, guidance steering and conflict resolution. In addition, *Overarching Cooperation Agreements* need to be made among all data space actors considering functional, technical and legal aspects. Furthermore, some agreements can be reusable in a generic or sector-specific way, while others are use-case specific.

In the *Continuity Model* building block, processes for the management of changes, versions, and releases for standards and agreements as well as a governance body for decision-making and conflict resolution are documented.

In addition, the *Regulations* building block also needs to be considered in the administration of a data space. It includes laws or administrative rules made by an organization for the guidance or prescription of conduct of its members or in a specific country [1].

4.1.3 Organisational and Operational

In order to ensure data sovereignty, operational and organisational agreements need to be made, as they support and enable usage policies. Furthermore, these agreements also bring trust into the data space because of the connection they build between the physical and digital world. The data space's interoperability is based on those agreements and has to be maintained and synchronized continuously between all parties.

Building blocks related to interoperability

To be more precise, a building block related to interoperability is defined, for which the maintenance of specific general agreements, domain specific models or other documents is needed. Measures for change, release and version management are provided by the continuity model. The *Domain Data Standard* building block comprises the language (syntax and semantics) for data sharing in a specific sector or domain. A combination of multiple standards is needed to accomplish specific goals.

Building blocks related to trust

The building blocks related to trust are an addition to the technical building blocks as operational and organisational measures bring trust into the data space. Thus, the

provision of a digital identity to a legal or natural entity for a reliable identification and authentication builds a connection between the physical and digital world.

The first building block under this category is called *Unique Identifiers* describes a tool that enables a reliable identification of legal entities, natural persons, or things across domain specific or country specific identification schemes. Furthermore, the identification is extended with value-adding tributes (like the commercial register number or tax identification number) which are provided by trusted parties.

Authorisation Registries established according to the operational agreements in the data space are then used to identify each data space participant and verify and validate their digital identities in order to map them to real-world objects. When a participant is authenticated, a structured admission process along with a compliance assessment is needed to build up trust. In addition, neutral bodies approve and monitor these registries.

Moreover, *Trusted Parties* verify and validate the participants' capabilities based on their authenticated identities, as they first acquire or evaluate the capabilities in a structured process like through certifications or registrations. Then the verification of the claims against a digital identity takes place. Therefore, the trusted parties' main aim is to provide neutral digital evidence on specified facts, whose basis are predefined measurable criteria according to regulations or (sector-)specific agreements.

4.1.4 Business

The business building blocks contained in this chapter help regulate the terms and conditions of the sharing and exchange of data as well as the business relationships between the actors operating in the data space.

The *Operational Service Level Agreements (SLAs) define* the specification of the services offered by a Data Service Provider in a data space and standards that need to be followed and quality that has to be met in these services. [1, p. 57].

To keep track of accounting practices and reports performed in the operation of the data space according to applied business models, the *Accounting Scheme* building block has been created. Furthermore, it specifies reports and data-sharing parameters to be produced and reported for every business actor and transaction in the data space [1, p. 57].

As data providers do not necessarily provide their data for free, a data space is in need for Billing/Charging Schemes including the resources and specified rules for the billing of services and transactions using accounting data and reports as a basis. The common

schemes used are based on the data volume, the number of requests for, or connections to, a service or the time period for the usage of the data. In addition, the *Data valuation method* block provides methods used to estimate the data value of shared data in a data space [1, p. 57, 59].

The *Smart Contracts* building block connects legal and organizational to technically enforceable and measurable agreements. Thus, Smart Contracts in general are protocols of terms and conditions agreed upon by two or more parties in a data space including data usage policies, legal aspects, SLAs and other agreements [1, p. 41, 57].

4.2 List of required minimum data space building blocks

Based on the use case descriptions and the process described in section 2.2 we identified which building blocks will be required to implement the process steps within the scenarios, information handling or fulfilment of requirements in the pilot use cases. Table 8 summarises how frequently building blocks are needed across the scenarios:

Table 8: List of technical building blocks of data spaces with the number of scenarios that require these blocks

Building Block Category	Building Block name	Number of Scenarios
Technical	Data Models and Formats	22
	Data Exchange APIs	22
	Identity Management	21
	Trusted Exchange	21
	Data Processing	15
	Metadata and Discovery Protocol	16
	Access and Usage control / Policies	16
	Publication and Marketplace Services	13
	System Adaptation	9
	Provenance and traceability	7
	Data Visualisation	5
	Data Analytics Engine	4
	Workflow Management Engine	3
	Data Routing and Preprocessing	3
	Data Usage Accounting	1

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Governance	Data Space Boards	23
	Continuity Model	23
	Overarching cooperation agreement	23
	Regulations	11
Organisational	Domain Data Standard	17
	Unique Identifiers	2
	Authorisation Registry	0
	Trusted parties	0
Business	Service Level Agreement	8
	Smart Contract	1
	Accounting Scheme	1
	Billing / Charging Scheme	1

A detailed mapping of building block requirements to use case scenarios within the pilots is shown in Table 9.

Table 9: Building Blocks requirements by Use Case Scenarios

	Building Block name	No.of Scenario	P1- ES	P2- PT- A-1	P2- PT- A-2	P2- PT- A-3	P2- PT- A-4	P2- PT- B-1	P2- PT- B-2	P2- PT- B-3	P2- PT- C	P2- PT- D	P3- SI- 1	P3- SI- 2	P4- GR	P5- IT- A	P5- IT- B-1	P5- IT- B-2	P5- IT- B-3	P5- IT- B-4	P5- IT- C-1	P5- IT- C-2	P7- LV- 1	P7- LV- 2	P7- LV- 3
	Data Models and Formats	22	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1
	Data Exchange APIs	22	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	ldentity Management	7						1	1	1	1					1			1		1				
	Trusted Exchange	21	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	
	Data Processing	16			1	1	1	1	1	1	1	1				1	1	1	1	1		1	1	1	
ical	Metadata and Discovery Protocol	21	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	
Technical	Access and Usage control / Policies	16		1	1		1	1	1	1		1	1			1	1	1	1	1		1	1	1	
	Publication and Marketplace Services	1										1													
	System Adaptation	13		1	1		1	1	1	1		1							1	1	1	1	1	1	
	Provenance and traceability	9	1								1	1				1	1	1	1			1	1		
	Data Visualisation	15	1	1				1	1	1	1	1	1	1			1				1	1	1	1	1
	Data Analytics Engine	3														1	1					1			

	Workflow Management Engine	4	1	1									1		1										
	Data Routing and Preprocessing	5	1												1	1						1			1
	Data Usage Accounting	3						1	1	1															
	Data Space Boards	23	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
nance	Continuity Model	23	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Governance	Overarching cooperation agreement	23	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Regulations	11		1				1	1	1	1	1				1			1				1	1	1
la	Domain Data Standard	8						1	1	1	1					1	1					1		1	
Organisational	Unique Identifiers	1																		1					
Organ	Authorisation Registry	1																		1					
	Trusted parties	1																	1						
	Service Level Agreement	2															1		1						
SS	Smart Contract	0																							
Business	Accounting Scheme	0																							
ш	Billing / Charging Scheme	17	1	1	1		1	1	1	1	1		1		1	1		1			1	1	1	1	1

4.2.1 Technical

The most frequently mentioned technical building blocks are data models and formats and data exchange APIs for the exchange of data. These are needed for all machine-to-machine interactions in the data space. There is only one scenario (P7-LV-3) which plans for a direct user interaction on a website.

Trusted exchange and with it the implementation of identity management solutions and the application of usage policies are relevant for almost all of the data exchange processes. For data assets that are to be made transparently available through the data space publication, building blocks like a broker or marketplaces are required. This implies the need for metadata descriptions and a discovery protocol.

Other technical building blocks are mentioned occasionally. System adaptation is relevant to the pilots 1, 2 and 5. Data provenance and tracking are mentioned in pilots 2 and 5. Mentions of building blocks on visualisation, data routing and processing as well as workflow management are few and the use case do rather plan these processes with established software components in a conventional IT architecture setup. For instance, Grafana may be used for visualisations in several use cases, yet it will be integrated in the local system setup of the pilot participants and not be operated as a data space service.

The data space feature of data usage accounting is exclusively mentioned in the use case P2-IT-2D when detected anomalies of appliances are provided to potential service providers.

4.2.2 Governance

The governance building blocks are assumed to be implicitly included in the objective of creating an Energy Data Space and thus obligatory to all use cases to be implemented within a Data Space environment.

Regulations are mentioned in 11 use case scenarios. Most of them refer to the GDPR and occur when user data that is linked to natural persons are used within a use case. For pilot 7 there are regulations on the methodology of calculations within the applications as this use case is supporting the workflow of the public administration. Further regulation on the European and national level apply to electrical grid data. Also compliance with anti-trust laws to avoid that fair competition is undermined by data provision between in-kind competitors need to be ensured. These regulatory requirements are further explored within ENERSHARE in Task 2.4.

4.2.3 Organisational / Operational

Domain data standards are the most relevant operational building blocks across the use cases. This refers to the information items such as metering data as set out in section 3.3.3 which are needed in several use cases. However, with the perspective of a growing and interoperable energy data space there is also a strong need to apply data standards on key areas like e-mobility (pilot 5) and building efficiency (pilot 7).

Unique identifiers are referenced twice in pilot 5. They are to be applied as identifiers for electrical meters and electrical vehicles. It is likely that further use cases will require unique identifiers but did not yet specify it in the templates.

No mentions are found on an authorisation registry and trusted third parties. This may be seen in light of the focus on the energy applications that are to be implemented at a prototype scale within the research project where these roles are not relevant.

4.2.4 Business

A service level agreement (SLA) was mentioned in the requirements of eight use cases. Though, it will be relevant for most of the use cases to achieve the intended operational status.

Further business building blocks like accounting schemes, billing or charging schemes or smart contracts are only mentioned in the description of pilot 5. The electric mobility platform is planned to use smart contracts with EV customers and allow for micropayments as reward for the flexibility provision.

4.2.5 Summary

The use cases within ENERSHARE can demonstrate nearly the full set of building blocks discussed for data spaces. There is a strong focus on data and trusted exchange. Data used in the use cases should include data models and formats, possibly be aligned with domain data standards, and enriched with metadata and discovery mechanisms through publication services and marketplaces.

Trusted exchange makes use of the identity management within the data space and the access and usage control and policies and will be implemented across all use cases. These building blocks form the core of the requirements from the current bottom-up use case perspective.

From the work on the use case description, different levels of maturity of use case planning have emerged. Use cases with more advanced planning have already included more detailed and focused requirements and process descriptions. This coincides in some cases with the integration of business and operational building blocks.

5 Conclusions

This deliverable concludes the use case description of the pilots planned in the project ENERSHARE. It describes 11 use cases of 6 pilots of the projects. One pilot is subject to change and the use case analysis is ongoing. This document will be updated with the findings in future versions. It further created a list of building blocks based on the use case descriptions and identified cross-use case collaboration potential.

The digital ecosystem within the ENERSHARE consortium consists of a balanced mix of data suppliers, data customers and service intermediaries. It spans the digital value chain from the generation and acquisition of data from established systems, generating insights from data analysis and processing to the provision of services to customers.

From the use case analysis there is a clear focus on the core building blocks related to data and trusted exchange. Therefore, the connector framework, the identity management and the required access and usage policies should have high priority in the first iterations of the data space implementation.

There is also potential for cross use case and cross pilot cooperation on data models and format. The most prevalent kind of data is metering data that is relevant in all but one pilots. Furthermore, data on flexibility need and potential and on load forecast are key within pilots 2 and 5 and are well suited to make use of domain data standards.

Business building blocks have only been integrated in pilot 5. As sustainable business models are to be created along the creation of the data space this may further be studied within the project as part of task 2.3.

At this early stage of the project, most use cases focus on the core functionalities of data spaces. At the same time, they deal with challenging issues on the energy system technology aspect, e.g. when services for combined system planning on inter-energy

D2.1: Use cases' descriptions and list of minimum Data

Space building blocks required for pilots

(electricity, heat and gas in pilots 3 and 4) or inter-sector planning and optimisation (electricity and water networks in pilot 5) are concerned. It may be expected that new requirements will emerge as further functionalities from advanced building blocks are being understood and picked up by business process owners. These will then be integrated in future versions of the use case descriptions and lead to new developments as developers get more familiar with the potential and available technical components.

6 References

- [1] L. Nagel and D. Lycklama, "Design Principles for Data Spaces Position Paper," 2021.
- [2] Use case methodology Part 2: Definition of the templates for use cases, actor list and requirements list, IEC 62559-2:2015, International Electrotechnical Commission (IEC), Apr. 2015. [Online]. Available: https://www.vde-verlag.de/iec-normen/221767/iec-62559-2-2015.html
- [3] Delegated Act on the climate objectives. Brussels, 2021. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R2139&from=EN
- [4] eblX®, EFET and ENTSO-E, "THE HARMONISED ELECTRICITY MARKET ROLE MODEL," 2022. [Online]. Available: https://eepublicdownloads.entsoe.eu/clean-documents/EDI/Library/HRM/Harmonised_Role_Model_2022-01.pdf
- [5] IDSA, IDS RAM 4. [Online]. Available: https://github.com/International-Data-Spaces-Association/IDS-RAM_4_0
- [6] Smart Grid Use Cases. [Online]. Available: https://smart-grid-use-cases.github.io/docs/ (accessed: Feb. 17 2023).
- [7] European Big Data Value, Strategic Research and Innovation Agenda.
- [8] European Commission, "EU Taxonomy Compass," Brussels, 2022. [Online]. Available: https://ec.europa.eu/sustainable-finance-taxonomy/

7 Appendix

- 7.1 Pilot 1 Use Case 1 Wind farm integrated predictive maintenance and supply chain optimization
 - 7.1.1 Description of the Use Case
- 7.1.1.1 Name of the use case

	Use o	ase identification
ID	Area / Do-main(s)/ Zone(s) [OPTIONAL]	Name of the use case
P1-ES		Wind farm integrated predictive maintenance and supply chain optimization

7.1.1.2 Version management

		Version mar	nagement	
Version No.	Date	Name of author(s)	Changes	Approval status
0.1		Linda Rülicke, Volker Berkhout, Marie Eberhard		
0.2	20.01.2023		Integration of input, Scenario steps, extended actor descriptions	
0.3	25.01.2023		Added pitch system in business case and narrative	
0.4	21.02.2023	•	Added gearbox in some missing parts	

7.1.1.3 Scope and objectives of use case

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Scope	This pilot aims to foster data driven innovation in the onshore and offshore wind energy industry, along its value chain, to maintain its competitive advantage and contribute to the decarbonisation of the economy.
Objective(s)	(1) Design and development of an offshore wind digital platform (IDSA reference architecture and components included) as one of the core technologies, for enabling the federated data sharing and machine learning (ML)based services between data owners and data users;
	 (2) Enrichment of the IDSA architecture's components with innovative solutions (IDSA connectors in the edge, edge computing, data-driven and Digital Twin based O&M algorithms, synthetic failures data generation) (3) Creation of the most adequate business model for data monetisation through the platform
Related business case(s)	 The main business cases for this pilot are linked to the business cases of the actors and include: Provision of new data analytics tools and digital twins for predictive maintenance to reduce maintenance costs and increase availability of wind turbines. Provision of a data-driven approach for fault detection and diagnosis on the following wind turbine subsystems: generator, gearbox, pitch system and power converter. This approach is used to give early indications of performance degradation, allowing therefore maintenance to be well scheduled before reaching a severe damage stage.

7.1.1.4 Narrative of Use Case

Narrative of Use Case

Short description

Windfarm owners and wind turbine OEMs have access to the data collected from the wind energy turbines in operation and they are the only players that are presently extracting value out of data at the top of the value chain. However, European components suppliers, ICT companies and ML service providers have difficulties to fully automatically access the data produced by the different systems in wind turbines in real-life operation. This fact causes certain limitations to extract full value out of data and to improve their competitiveness through digitalisation of products and services.

This pilot aims to foster data driven innovation in the onshore and offshore wind energy industry, along its value chain, to maintain its competitive advantage and contribute to the decarbonisation of the economy.

Complete description

This pilot aims to foster data driven innovation in the onshore and offshore wind energy industry, along its value chain. The scope in this use case is to design and develop an offshore wind digital platform, for enabling the federated data sharing and ML based services between data owners and data users. The platform will be based on IDS architecture and include the design and development of IDSA connectors in the edge in addition to cloud-based services.

It will include the design and development of an integrated monitoring strategy for predictive maintenance of electrical drivetrain components, more specifically the generator (DFIG/permanent magnet technology) and the power converter, as well as the gearbox and pitch system of wind turbines. It will consist of a combination of data-driven models with physical models of the generator, gearbox, hydraulic pitch system and potentially of the power converter into an integrated digital twin strategy. Normality models and a set of potential failure conditions will be developed. Both low frequency SCADA data (10-min) and higher frequency data (kHz range) if available, as well as maintenance/failure reports will be used. The application of edge computations in the models will be analysed.

The proposed case consists in providing a novel method based on ML algorithms to detect anomalies on several wind turbine subsystems (generator, gearbox, hydraulic pitch system and power converter) and identify their possible root causes. To do so, the SCADA data from onshore and offshore wind farms are used to construct fault detection and diagnostics algorithms.

In this context, classic anomaly detection approaches are doomed to be ineffective to point out sensor measurements responsible for the failure. Moreover, these models are generally not straightforwardly interpretable to humans. To cope with these problems, a two-phases anomaly detection algorithm will be implemented:

- The first step aims to learn an anomaly detection model based on SCADA data (10mn timestep).
- In the second step, we develop an original approach to interpret anomaly results returned by the model in order to provide important insights about what deviation caused the anomaly.

It is important to emphasize that, beyond the wish to use a two-step algorithm to discover the main causes of the anomaly, there is also the intent to validate the anomalies, help decision-making, and optimize the planning of maintenance measures.

For wind turbine condition monitoring cloud services will be used together with edge computing.

7.1.1.5 Key performance indicators (KPI)

Key performance indicators (KPI)

ID	Date		Reference to mentioned use case objectives
05-4		Digital Twin (wind turbine)	
5ET-2		N° of stakeholders/services providers with access to wind turbines data	
5-ET3		№ of services created with wind turbine data	
LEI1-ET2		Reduction of the operation and maintenance costs of the windfarms	
LEI1-ET3		Optimisation of the designs of the components and subsystems monitored	

7.1.1.6 Use case conditions

Use case conditions

Assumptions

Digital Twin Performance

- The most important electrical properties of the generator and converter are needed to construct the physic model as a base of the digital twin
- Data related to the operation of the hydraulic pitch system are needed to construct the digital twin of the hydraulic pitch system
- Data related to the operation of the gearbox are needed to construct the digital twin of the hydraulic pitch system
- Availability of a sufficiently rich model training dataset, for healthy system behaviour
- Besides, a set of labelled failures must be available

Prerequisites

The main requirements are data availability identified in the assumptions. Particularly detailed generator/converter/hydraulic pitch system parameters (design and operation) are essential. Required data includes:

- General operational data
 - o Wind speed
 - o Pitch angle
 - o Rated active power
 - o Rated torque
 - o Rated voltage
 - o Rated current

- Generator data
 - o Power Factor
 - o Nominal speed of generator
 - o Frequency
 - o Stator resistances, reactances/inductances
 - o Stator winding temperatures
 - o Moment of inertia of rotor
 - o Efficiency
 - Type and location of existing sensors
- Converter data
 - o Grid-side converter nominal AC voltage
 - o Grid side coupling inductor
 - o Line filter capacitor
 - o Nominal DC bus voltage
 - o DC bus capacitor
 - o Boost converter inductance
- Hydraulic pitch system data
 - o Hydraulic system pressure
 - o Accumulator pressure
 - o Oil temperature
 - o Cylinder position
 - o Proportional valve commands
 - o Pump charging time
 - o Cylinder's piston chamber pressure
 - o Cylinder's Rod chamber pressure
- Gearbox
 - o Oil temperature
 - o Bearing temperature
 - o Wind speed
 - o Rotational speed
 - o Generator power output
 - o Vibration/acceleration
- 7.1.1.7 Further information to the use case for classification / mapping

Classification information
Relation to other use cases
Level of depth

High level use case (HLUC)

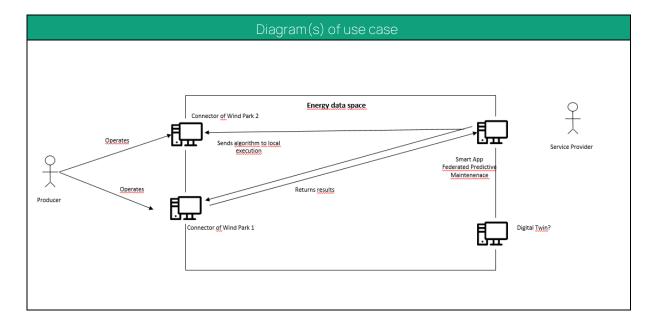
Prioritization

Mandatory

Generic, regional or national relation

Generic

Nature of the use case


Technical / System

Further keywords for classification

Wind energy, wind turbine, generator, converter, IGBT, hydraulic pitch system, failure, predictive maintenance, monitoring, digital twin.

7.1.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.1.3 Technical details

7.1.3.1 Actors

Actors

Grou	ping	Group description		
Harmonized electricity m	narket role	The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.		
Actor name	Actor type	Actor description	Further information specific to this use case	
Producer	Role	A party that produces electricity.	This is a type of Party Connected to the Grid, wind farm operator	
Energy Service Company	Role	related services to the		

Actors								
Grou	ping	Group description						
Ped	pple	Users involved in interpretation of the dat	the modelling and a					
Actor name	Actor type	Actor description	Further information specific to this use case					
Domain Expert			responsible for the					

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Data Scientist	human	Data	analyst	This pers	son will	be
		responsible	for the	responsibl	e for	the
		modelling	of the	developme	ent	and
		generator	and	training of	models	used
		converter		for the	predi	ctive
				maintenar	ce conte	xt

Actors				
Grou	ping	Group de	escription	
Third F	Parties	Representation of comp process	anies participating in the	
Actor name	Actor type	Actor description	Further information specific to this use case	
Maintenance service provider	Business	A party that provides maintenance services.		
Turbine original equipment manufacturer (OEM)	Business	Produce appliances in consumer's household.	Will be simulated during the project	
Turbine component supplier	Business	A company that supplies components.		

Actors			
Grou	ping	Group de	scription
Informatio	n Systems	Information managemen	t platforms
Actor name	Actor type	Actor description	Further information specific to this use case
SCADA-System		Supervisory control and data acquisition system of assets	

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Condition-Based Monitoring System	System	Monitoring of asset condition	
Data Space Connector	System	Connects the specified data to the data space	
Digital twin of turbine	System	System that stores historical data, integrates physical and data-driven models of the wind turbine	
Digital twin of generator and converter	System	System that stores historical data, integrates physical and data-driven models of the generator and converter	
Digital twin of hydraulic pitch system	System	System that stores historical data, integrates physical and data-driven models of the hydraulic pitch system	
Digital twin of gearbox	System	System that stores historical data, integrates data-driven models of the hydraulic pitch system	
Federated Predictive Maintenance App	System	Application that runs on the edge device	
Anomaly interpretation engine	System	System that evaluates anomalies detected by apps.	

Actors

Grouping	g	Group description			
Data space role	e model	Roles from the data value chain that can be taken by energy and non-energy actors.			
Actor name	Actor type	Actor description	Further information specific to this use case		
Data Owner		Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self- sovereign control over the data.			
Data Provider	Role. IDS	Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.			
Data Consumer	GAIA-X	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.			
Service Provider	I ROID IDS	Services are offered by a Service Provider and consumed by a Service Consumer.			
Service Consumer	Role. GAIA-X	Services are offered by a Service Provider and consumed by a Service Consumer.			
App Provider	Role IDS	The app provider develops and provides applications for digital services by a service provider.			
App Consumer	Role IDS	The app consumer runs the app in the own connector.			

7.1.3.2 References

	References					
No.	References Type	Reference			Originator <i>I</i> organization	Link

7.1.4 Step by step analysis of use case

7.1.4.1 Overview of scenarios

	Scenario conditions					
No.	Scenario name	Scenario description	Primary actor		Pre- condition	Post- condition
1	detection using hybrid model (physics based model + data- driven) and/or data-driven	for detection of anomalous behaviour of	responsible for the respective data	 Warnings from SCADA or CMS 	data • WT controller	indicators are shown in dashboard

7.1.4.2 Steps-Scenarios

	Scenario								
Scenari o name:		,	ction using	hybrid	model (phy	sics base	ed model + (data-driven) and/or data
Step No.	Event	proces	Descriptio n of process/ activity	Service	Informatior r (actor)	nproduce	Informatio n receiver (actor)	Informatio n exchange d (IDs)	Requirement , R-IDs
1			Provide sensor data for creation of digital twin		Producer		Energy Service Company	I-1, I-2, I-3, I-4. I-5	R-DA-1, R- DA-2, R-IF-1, R-IF-2
2			Create ML model for federated learning app		Energy Company	Service			R-HS-1
3			Run federated learning app on edge device		Producer				R-IF-4
4			Interpret anomaly if detected		Producer		Energy Service Company	I-5	R-IF-3
5			Visualise result		ESCO		Producer	I-6	

7.1.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

Information exchanged			
Information exchanged, ID	Name of information	Description information	ofRequirement, R-IDs
		ex- changed	

I-1	Raw sensor data of Measurements the wind turbine generator sampled at high frequency (KHz)	R-DA-1
l-2	Raw sensor data of Measurements the wind turbine converter sampled at high frequency (KHz)	R-DA-1
1-3	Raw sensor data of Measurements the hydraulic pitch sampled at high frequency (KHz)	R-DA-1
1-4	Raw sensor data of Measurements the gearbox sampled at high frequency (KHz)	R-DA-1
l-5	SCADA data of the Measurements wind turbine sampled at low frequency (10min)	R-DA-2
I-6	Data on detectedError estimate anomalies	R-HS-1
1-7	Interpretation Decision support recommendation	

7.1.6 Requirements

	Requirements			
Categories ID	Category name for requirements	Category description		
R-DA	Data availability requirement	Requirement linked to the necessary data to be available for the use case.		
R-HS	Health state ground truth info	Requirement linked to the availability of information about the health state of the machine		
R-IF	Algorithm interfacing APIs	Requirement linked to the availability of software component interfacing APIs		

Requirement RID	Requirement name	Requirement description
R-DA-1	available	The required high frequency data for the generator, converter, gearbox and hydraulic pitch system are available
R-DA-2	•	The required status log data and SCADA data are available
R-HS-1	case	The health state of the generator, converter, gearbox and hydraulic pitch system ground truth data is available for the sensor data of R-DA-1 and R-DA-2
R-IF-1		Interface for extracting raw sensor data from data source
R-IF-2	'	Interface for storing/extracting preprocessed data
R-IF-3	Model API ENGIE models	Interface for communicating with ENGIE models
R-IF-4		Interface for communicating with Tecnalia models

7.1.7 Common terms and definitions

Common terms and definitions			
Term	Definition		
Wind turbine	Wind turbine generator. The entire wind turbine including tower, blades and nacelle.		
Generator	Subcomponent of the wind turbine that allows to convert rotation of the blades into electricity		
(Power) converter	Subcomponent of the wind turbine that allows to convert AC power to DC power and back to AC power at another frequency. It is used to allow control of the variation of the wind turbine speed.		
Hydraulic pitch system	Subcomponent of the wind turbine that allows to turn the rotor blades as optimally as possible into the wind		
Gearbox	Subcomponent of the wind turbine to increase rotational speed from a low-speed rotor to a higher speed electrical generator		
Anomaly	An anomaly is detected when there is sufficient difference between the measured value of a physical quantity and its corresponding value as predicted by a model.		

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Health score	The translation of anomalies into a metric representing the condition of
	an asset.

- 7.2 Pilot 2 Use Case 2a Leveraging on consumer-level load data to improve TSO's operational and planning procedures.
 - 7.2.1 Description of the Use Case

7.2.1.1 Name of the use case

	Use case identification				
ID	Area / Domain(s)/ Zone(s) [OPTIONAL]	Name of the use case			
UC_A_Pilot2		Leveraging on consumer-level load data to improve TSO's operational and planning procedures.			

7.2.1.2 Version management

	Version management					
Version No.	Date	Name of author(s)	Changes	Approval status		
0.1	17.10.2022	Linda Rülicke, Volker Berkhout, Marie Eberhard	Initial creation			
0.2	31.01.2023	Nuno Fulgêncio, Alexandre Gouveia, Gonçalo Glória	First draft			

7.2.1.3 Scope and objectives of use case

	Scope and objectives of use case
Scope	Using behind-the-meter data to improve operational and planning procedures of the Portuguese transmission system operator, using smart services from the Energy Data Space.
Objective(s)	The objective of this use-case (UC) is to assess the value of behind-the-meter (consumer-level) load data to the Transmission System Operators (TSOs) in improving operational and planning procedures, by taking advantage of the Energy Data Space ecosystem's advanced capabilities for data sharing. The ultimate goal of this UC is to quantify the improvement of well-established procedures for network planning and operation that TSOs are responsible to execute, and translate it into the value – monetary and/or social – of the available behind-themeter data.

The proposed analysis may be breakdown into four main topics to be addressed:

- Evaluate impact of using aggregated and individual consumer-level data, exploring federated learning, to improve net-load forecasting at the substation level.
- Evaluate the evolution of net-demand at the substation-level by using data on the typology/amount of load and generation (RES) at the end-consumer side. Assess whether this data unveils the need to refine TSOs' grid planning procedures, including the definition of additional scenarios to assure system stability and security.
- Track and quantify the aggregated demand-side flexibility potential of endusers (assuming an energy community configuration) and evaluate the potential for participation in the balancing markets for ancillary services provision (service managed by the TSO).
- Identification of opportunities for cross-sector synergies between electrical and gas demand at the consumer-level.

Related business case(s)

TSO can potentially reduce forecast errors, reducing the need for activation of corrective measures and thus improving grid resilience. Improving the TSO operational planning procedures by accounting with a more accurate definition of the evolution of the load. Increase the size of the reserve markets' participants' pools which, in principle, tend to promote the reduction of the price of the services. Enhance local energy usage with cross-sector (electricity & gas) alternatives to relief the upstream electric network stress.

7.2.1.4 Narrative of Use Case

Narrative of Use Case

Short description

This UC takes advantage of the Energy Data Space extended functionalities for safe data sharing to perform an evaluation of the value of the behind-the-meter data to the transmission system operator (TSO) in some of its operational and planning procedures. The UC will focus in using the consumption/generation data from energy communities' users to i) improve load forecasting at the substation level, ii) evaluate the evolution of load typology and respective impacts in the grid dimensioning, that may be fed-forward for refinements in the TSO's planning strategies; iii) track and quantify the aggregated flexibility potential at the energy communities level, that can be scaled-up to the system level e.g. through balancing services; iv) identification of potential for cross-sector synergies (electricity and gas) at the communities level.

Complete description

Relying on the capabilities of the Energy Data Space, the UC will be focused on the data exchange between consumers and the Portuguese transmission system operator (TSO). Besides providing an opportunity to test safe and secure data exchange between an open data market and a regulated company, this UC aims to withdraw the value of scaling-up behind-the-meter load and generation data

to the TSO – accessing and using the Energy Data Space as a data consumer – in the perspective of improving part of its operation and planning activities. This UC will be materialized into the Portuguese Pilot (Pilot 2, under WP9), and the main agents that take part in the interaction, through the Energy Data Space, are the following: RD NESTER will be acting as the TSO and data consumer; Smart Energy Lab (SEL) will act as energy community manager and data owner/provider; INESC TEC will act as a forecasting (federated) service provider. The UC will explore four main actions, including i) substation-level net-load forecasting, ii) network planning scenarios refinement, iii) flexibility potential for balancing services and iv) electricity to gas cross-sector opportunities. These sections are following explained:

- i) Forecast: In order to assess the value that behind-the-meter load profiles data from the energy communities might have for system operation and planning, in this first action of the UC, the data will be scaled-up to the TSO for the refinement of the up-to day-ahead load forecasting algorithms at the substation level. The impact of the use of the aggregated load consumption at these lower voltage levels of the grid will be evaluated by benchmarking the following solutions:
 - a. The TSO's (RD NESTER) "AI.Forecast" algorithms, which rely uniquely on historical load data at the substation (confidential data, from the Portuguese TSO REN). The AI.Forecast is an Artificial Intelligence (AI) -based architecture for electricity forecasting developed by RD NESTER. It uses an ensemble of machine learning (ML) methods for the automatic learning of load forecasting models, merged using Support Vector Machines (SVM) with a linear kernel for improved robustness and ability to generalize. The individual methods composing the ensemble are: 1) SMV relying on model fitting with support vectors regression using Radial Basis Function kernels; 2) Random forests randomly sampling the training set to provide inputs to tree-like models and combining them in the final result; 3) and Deep-learning (DL) using long short-term memory networks (LSTM) with two layers that learn long-term dependencies between time steps of sequence data. Hence, and contrary to model-driven forecasting, AI.Forecast provides site-driven solutions by extracting implicit site specific information from the site's electricity demand and generation data.
 - b. The federated-learning load forecasting algorithm developed by INESC TEC, based on additive vector autoregressive models with a data privacy protocol, which embeds the load consumption data from distributed consumers from SEL, to provide an estimation of the aggregated load at the same power substations, up to day ahead scenarios.

The accuracy of both methods will be measured, using well-established metrics, and compared. The possible accuracy improvement of the load forecasting resultant from the use of individual consumers' data will be translated into the monetary value of the data for the forecasting task, by including an analysis of the impact of the forecasting error in the operation procedures. It is expected that the study provides insights of the future growing interest of the TSO (and TSOs in general) to access the Energy Data Space to acquire similar data, for similar processes.

ii) Grid planning scenarios: The second action of the UC will address the value for TSO of data on the evolution of the net-demand in the end-consumers/prosumers of SEL's Living Lab, namely in the perspective of refining grid planning scenarios and eventually identify specific technical needs. As in the first action, SEL will provide the data over the Energy Data Space to the TSO, represented by RD NESTER. This action will rely on three main steps: 1) SEL will characterize consumers in terms of their assets' typology and power consumption, including the quantification of the presence of energy generation, storage systems, electric heating, electric vehicles and other. The consumer profiling will account with the inter/extrapolation of the already identified consumer profiles under the SEL universe, and aim for a level of representativeness capable of capturing the net-demand characteristics for a given area of the country, including the evolution trends over time (constrained by the time horizon of the available data). This analysis will rely not only on numerical manipulation,

but also on social information (age range, housing types, energy mix and EVs usage) of the consumers/prosumers, and will be developed by SEL and RD NESTER; 2) RD NESTER will consume the analysis in 1) to evaluate the impact of the evolution of net-demand in the grid, exploring scenarios with the aforementioned characteristics; 3) and also cross-relate the characteristics that are withdrawn from point 1) with the already in-force planning scenarios applied by the TSO, for a gap analysis. As in the previous, this action intends to derive the value for TSO in consuming data from the Energy Data Space, capable of providing an improved visibility over the evolution of net-demand, and materialize this analysis in a refinement of planning procedures.

- iii) Flexibility potential: In the third action of the UC, the TSO (RD NESTER) will consume data provided by SEL on the aggregated power/energy flexibility available on the energy communities' customers side to evaluate the potential for participation in the support of the system, namely through balancing services. The analysis intends to evaluate the capability of energy communities to meet qualification requirements (communication to the market infrastructures and technical capabilities of the assets), in particular for European-level reserve markets access (TERRE, MARI, PICASSO). The TSO (RD NESTER) will consume data of the flexibility potential, and evaluate the value of this information in light of the Portuguese systems' flexibility needs for reserve (based on historical data on balancing markets' needs and activation).
- iv) Cross-Sector: The fourth action of the UC intends to shed some light on the opportunities for cross-sector synergies, namely ascertain the potential of transitioning parts of energy consumption from electricity to gas, at the level of the energy communities led by SEL, and evaluate the impact of the electrical consumption deferral to the TSO level. This way it is possible to determine the value of cross-sector flexibility, where the energy vector of consumption changes according to the system's needs, analysis for which the data present on a potential Energy Data Space is crucial. Also in a perspective of system planning, the TSO (RD NESTER) will consume data related with the cross-sector potential which is provided by SEL. The analysis will be translated into a set of recommendations of withdrawn conclusions of the impact of taking advantage of such cross-sector synergies at this level.

7.2.1.5 Key performance indicators (KPI)

	Key performance indicators (KPI)					
ID	Date		Reference to mentioned use			
			case objectives			
UC2A-KPI-1	M34	Relative improvement of accuracy of forecast algorithm from TSO (RD NESTER) with relation to forecasting from the Service Provider (INESC TEC).	Improve TSO operational planning procedures by using aggregated consumer level data to optimize net-load and RES generation forecast up to day ahead.			
UC2A- KPI- 2	M34	Amount of flexibility ready for market	Aggregate demand side flexibility potential of energy community to make the potential available to balancing markets			
UC2A- KPI- 3	M34	Number of new proposed scenarios to be considered in the network planning procedures.	Use consumption data to identify which consumers' evolution of load in terms of typology and amount, exploring the impact			

Enershare D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

			this information may have on system planning, by feeding-back to TSO's planning procedures.
UC2A- KPI-	M34	Amount of energy (in MWh) that may be transposed across energy sectors (from electricity to gas)	Leverage on data from SEL to identify opportunities for cross-sector synergies, namely transforming electrical demand into gas.

7.2.1.6 Use case conditions

Use case conditions

Assumptions

The types and geographical dispersion of the clients of the Living Lab from SEL are assumed to be possible to inter/extrapolate to particular parts of the country (e.g. Lisbon), where RD NESTER is addressing the study of the four main actions of the UC.

Prerequisites

- Availability of Smart Energy Lab (SEL) data on clients' consumption (aggregated by amount and typology) and potential for flexibility and cross-sector.
- Availability of load power consumption at the substation level (in this UC, it will be used confidential data from the Portuguese TSO).

7.2.1.7 Further information to the use case for classification / mapping

Classifi	cation	inform	mation
Classiii	cation	IIIIOII	Hation

Relation to other use cases

BRIDGE use cases (https://smart-grid-use-cases.github.io/):

Procida Local energy community (GIFT) - AI.Forecasing tool from RD NESTER is applied in this use case.

Level of depth

High-Level Use Case (HLUC)

Prioritization

Mandatory

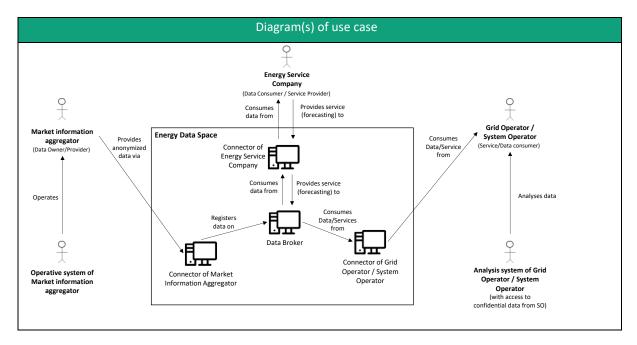
Generic, regional or national relation

Generic

Nature of the use case

Business Use Case

Further keywords for classification


RES forecast, flexibility, balancing market, energy community

7.2.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.2.3 Technical details

7.2.3.1 Actors

Actors				
Grouping Group description				
Harmonized electricity market role The Role Model has been developed in order dialogue between the market participants countries through the designation of a single nand domain that are prevalent within the elect focus is essentially to enable a common te development.		nts from different name for each role ectricity market. Its		
Actor name	Actor type	Actor description	Further information specific to this use case	
System Operator	Role	A party responsible for operating, ensuring the maintenance of and, if necessary, developing the electrical system in a given area and, where applicable, its interconnections with other systems, and for ensuring the long-term ability of the system	represent the role of the System Operator, by providing a link	

		to meet reasonable demands for the Portuguese TSO's transmission of electricity.
Market Information Aggregator	Role	A party that provides market related SEL, which collects information that has been compiled from the manages and figures supplied by different actors in the provides data from market. This information may also be the participants of published or distributed for general use. the Living Lab.
Energy Service Company	Role	A party offering energy-related services to INESC TEC will act the Party Connected to Grid, but not directly as a Service active in the energy value chain or the Provider physical infrastructure itself. The Energy (forecasting), and Service Company (ESCO) may provide insight Data Consumer services as well as energy management (SEL consumers services.

Actors				
Grouping		Group description		
Data space role	model	Roles from the data value chain that can be taken non-energy actors.	by energy and	
Actor name	Actor type	Actor description	Further information specific to this use case	
Data Owner	Role. IDS / GAIA-X	Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self-sovereign control over the data	ineinngs to thei	
Data Provider	Role. IDS / GAIA-X	Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.	SFI	
Data Consumer	Role. IDS / GAIA-X	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore	INESC TEC, RD NESTER	

		similar to the activities performed by the Data Provider.	
Service Provider	Role. IDS	Service Providers offers additional data services (e.g., for data analysis, data integration, data cleansing, or semantic enrichment) to improve the quality of the data exchanged in the International Data Spaces. Can be considered a Data Provider and a Data Consumer at the same time (e.g., as a Data Consumer, it receives data from a Data Provider, then provides its specific service, and then turns into a Data Provider itself and offers the data in the International Data Spaces).	provide the forecasting service to the System Operator, without having access
Broker Service Provider	Role. IDS	Intermediary that stores and manages information about the data sources available in the Data Spaces. As the role of the Broker Service Provider is central but non-exclusive, multiple Broker Service Providers may be around at the same time (e.g., for different application domains). The activities of the Broker Service Provider mainly focus on receiving and providing metadata	not explicitly represented in the diagram since its activities are intrinsically
Service Consumer	Role. GAIA-X	lby a Service Provider and consumed by a	RD NESTER (TSO)

	Act	ors	
Grou	ping	Group d	lescription
Informatio	n Systems		
Actor name	Actor type	Actor description	Further information specific to this use case

Connector of System Operator	System	Connects the Grid Operator/System Operator to the data space.	
Analysis systems of System Operator	System	Analyse given data in order to provide RES generation forecast and more.	
Connector Market Information Aggregator	System	Connects the Market Information Aggregator to the data space.	
Operative system of Market Information Aggregator	System	ICT-System that supports in the day-to-day operation of the Market Information Aggregator.	

7.2.3.2 References

	References					
No.	References Type	Reference			Originator / organization	Link

7.2.4 Step by step analysis of use case

7.2.4.1 Overview of scenarios

	Scenario conditions					
No.			,	Triggering event		Post- condition
1	at substation- level.	RD NESTER will consume the forecasting algorithm from INESC TEC, which uses data from SEL's consumers, and	INESC TEC	requests the forecasting tool	Forecasting tool from INESC TEC is ready. Confidential data	

	benchmark it against the AI.Forecast tool to evaluate the impact of consumers' data in forecasting load at the substation level.		from the TSO (historic load data at the substation) is available for RD NESTER only.	
consumption evolution to improve grid planning	RD NESTER consumes SEL data on load profiles and respective typology to feed planning procedures of the TSO.	SEL		
estimation	RD NESTER consumes SEL data on flexibility potential for balancing services, and evaluate potential to the system.	SEL		
opportunities	RD NESTER consumes SEL data on cross-sector potential and evaluate impact in the system.	,		

7.2.4.2 Steps-Scenarios

			Scena	rio				
Scenario name:	Net-lo	oad forecast at s	ubstation-level.					
Step No.	Event	:Name of process activity	Description of process/ activity	Service	Information producer (actor	Informati on receiver (actor)	Informati on exchange d (IDs)	Requireme nt, R-IDs
1.1		Data collection	Collection of relevant data by Smart Energy Lab		SEL			
1.2		Data Anonymization	Anonymized Data provision of individual meters by Smart Energy Lab		SEL			
1.3		Data Provisioning	Provide anonymized data from SEL clients into the Data Space, that is consumed by INESC TEC		SEL	INESC TEC	I-1, I-3	P2A-F-05
1.4		Federated- Learning Forecasting	INESC TEC uses data from SEL to train FL forecasting models, capable also to		INESC TEC			P2A-F-02

		integrate load historical data from substation.			
1.5	Service provision	INESC TEC provides load forecasting model to RD NESTER, capable of ingesting confidential data locally (at the TSO side), namely historical data from load at the substation-level.		RD NESTER	P2A-F-05
1.6		End of the process, and evaluation of value of data from SEL in the forecasting of load at the substation.	RD NESTER		

					Scenario			
Scenari name:	Analys	is of the co	onsumption ev	olution t	o improve grid plannir	ng.		
Step No.	Event	Name of process activity	Description of process/ activity	Service	Informationproducer (actor	Information receiver (actor)	Information exchanged (IDs)	Requirement, R-IDs
2.1			Provide individual meter data to data space		SEL	RD NESTER	I-1, I-3	P2A-F-05
2.2			Analysis of SEL's clients consumption and generation profiling analysis.		SEL			P2A-F-03
2.3			Data provision analysis from step 2.2		SEL	RD NESTER	I-4	P2A-F-05
2.4			Analysis of future grid planning		RD NESTER			P2A-F-04

Scenario

Scenarion name:	Flexib	ility pote	ential estimation					
Step No.	Event	Name of process activity	Description of process/activity	Service	Informationproducer (actor	Information receiver (actor)	Informatio n exchanged (IDs)	Requirement, R-IDs
3.1			Data provision of consumption analysis		SEL	RD NESTER	I-4	P2A-F-05
3.2			Aggregated demand side flexibility potential of energy community		SEL	RD NESTER	I-5	P2A-F-01
					Scenario			
Scenario name:	Cross-	sector o	pportunities					
Step No.	Event	Name of process activity	Description of process/ activity	Service	Informationproducer (actor	Information receiver (actor)	Informatio n exchanged (IDs)	Requirement, R-IDs
4.1			Data provision of consumption		SEL	RD NESTER	I-1, I-3, I-6	P2A-F-05
4.2			Analysis of opportunities of cross-sector synergies		SEL	RD NESTER	I-6	P2A-F-01, P2A-F-05
			(electricity and gas)					

7.2.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

		Information exchanged	
Information	Name of	Description of information	Requirement, R-IDs

exchanged, ID	information	ex- changed	
l-1		The information contains the different categories of electrical devices and their distribution over the households	
I-2	Net-Load forecast	The information contains up-to day-ahead forecasts for the net-load at the substation-level	P2A-F-04
I-3	Meter data	Individual meter data showing energy consumption	
I-4	(consumption and	Profiles of consumption and generation from locally metered data, and respective social characterization (age range, housing type).	
I-5		Aggregated flexibility potential from SEL's end users, for a given time horizon.	
I-6	SEL users gas consumption	Data from SEL users on their gas consumption describing technology, amount and time stamp	
I-7	SEL users' potential for cross- sector	Data from SEL users on potential for cross-sector synergies, namely transferring electrical consumption to gas	
I-8	TSO's recommendations for cross-sector	List of recommendations from TSO with regards to the need for cross-sector, to be applied at the end-user side.	

7.2.6 Requirements

	Requirements	
Categories ID	Category name for requirements	Category description
F	Functional	Functional requirements
Requirement R-ID	Requirement name	Requirement description
P2A-F-01	Calculate demand side flexibility potential	TSO shall be able to calculate the aggregated flexibility potential of consumers from SEL, to evaluate the potential of participating in balancing markets.

P2A-F-02	Federated-learning load forecast	INESC TEC produces a model for load forecasting at the substation level, using load data from SEL clients.
P2A-F-03	SEL clients profiling and representativeness.	SEL will estimate and define the profiles of its clients considering their electrical consumption (technology and amount) and generation (distributed generation mix), and social characteristics (age range, housing type). This analysis will also assess the representativeness of these profiles in a given geographical area.
P2A-F-04	Grid planning analysis	TSO will evaluate the impact of the evolution of end-user consumption/generation in the grid planning strategies, by taking advantage of data available in the Energy Data Space.
P2A-F-05	Access Rights	Limit access rights of data resources in the data space to only authorized users
P2A-F-06	Cross-sector opportunities	TSO will leverage on electrical and gas consumption from SEL users, and SEL analysis for cross-sector opportunities, to provide recommendations back to the Data Space.

	Requirements	
Categories ID	Category name for requirements	Category description
NF	Non-Functional	Non-Functional requirements
Requirement R-ID	Requirement name	Requirement description
P2A-NF-01	Data Reliability	Data shall be consistent, reliable, transparent and accessible only to authorized users
P2A-NF-02	Data Accessibility	Grant access to data in accordance with usage policies and access rights

7.2.7 Common terms and definitions

Common terms and definitions			
Term Definition			

- 7.3 Pilot 2 Use Case 2b Instantiation of energy communities and digital simulation of business models
 - 7.3.1 Description of the Use Case
- 7.3.1.1 Name of the use case

Use case identification			
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case	
UCB_Pilot2	Energy Communities	Instantiation of energy communities and digital simulation of business models	

7.3.1.2 Version management

	Version management				
Version No.	Date	Name of author(s)	Changes	Approval status	
0.1	17.10.2022	Linda Rülicke, Volker Berkhout, Marie Eberhard	Initial creation		
0.2	14.11.2022		Start of the use case drafting		
0.3	16.12.2022	Ricardo Bessa, José Villar, Armando Moreno, José Paulos	First draft of the use case		

7.3.1.3 Scope and objectives of use case

Scope and objectives of use case			
Scope	Planning and business model assessment of renewable energy communities (REC) –		
	Article 2(16) Recast Renewable Energy Directive – and Citizen Energy Communities (CEC)		
	- Article 2(11) Recast Internal Electricity Market Directive.		

Objective(s)	The main goal is to explore the combinatorial value of data owned by different Data
	Owners (i.e., its cross-silo value) for optimal design of REC and/or CEC considering their
	economic feasibility, simulation of different assets ownership business models and
	integration of vulnerable citizens.
	<u> </u>
	The following specific objectives are associated to primary use cases:
	1) Sizing and economic evaluation of REC and/or CEC business models considering
	consumption and generation profiles available in the Data Space, as well as other data
	sources such as open market data (prices) and weather data, and the possibility of
	assets sharing models.
	<u> </u>
	2) Given a specific REC/CEC structure (members and assets), simulate its operation to
	estimate the dispatch of the flexible resources and the resulting energy price for the
	internal transactions within the community, according to the business model selected,
	considering also the inclusion of vulnerable citizens in the community (e.g., alternative
	electricity tariff scheme, financial schemes for community sharing).
	, ,
	3) Extract approximated flexibility models for smart appliances (e.g., using non-intrusive
	load monitoring data), enabling an overall quantification of flexibility and estimation of
	energy savings from intelligent load control.
Related business	REC and CEC emphasise participation and effective control by citizens, local authorities &
case(s)	smaller businesses whose primary economic activity is not the energy sector. Moreover,
	their main purpose is to generate social and environmental benefits rather than focusing
	on financial profits.
	on mandai prones.

7.3.1.4 Narrative of Use Case

Narrative of Use Case

Short description

The main actor of this use case is the Service Provider that receives data (consumption, generation, open weather measurements / forecasts, etc.) available in the Data Space (via Data Provider) to study and simulate different configurations and business models for REC and/or CEC. This includes the following functions: i) sizing of the distributed energy resources (DER) within the community, including the joint ownership of assets; ii) construction of flexibility models, with field data, for thermal loads; iii) simulation of pricing mechanisms within the community, considering the retailers' tariffs and flexibility from DER. This will enable economic feasibility analysis of energy communities, and to potentially engage vulnerable citizens, which can be identified by combining data collected from the residencies with external data (e.g., weather, average income, etc.), in energy trading / sharing activities under different business models. The benefit is to de-risk investment in shared energy resources and maximize the benefits of new local energy communities.

Complete description

This use case includes two optimization problems, the first one aims at determining the optimal installed capacities in the REC /CEC, considering typical consumption profiles, availability of renewable energy sources, and costs of technologies (both capital and operational cost). The second optimization problem considers the operation of the community constrained by the installed capacity from the first optimization problem, in particular its electrical energy sharing / trading, where the optimized dispatch of controllable energy resources (e.g., storage, thermal loads, electric vehicles) is obtained considering the opportunity costs of the community members (retailing tariff for the electricity consumed from the grid, and selling price for the electricity sold back to the grid), together with an internal electricity price to settle the internal energy transactions among members, which can be computed with different approaches or algorithms, to be used to study different financial schemes for communities. It includes 3 Primary Use Cases (PUC), divided in the following steps:

1. DER sizing and economic evaluation of the REC / CEC business model

Determining the optimal installed capacities in the REC /CEC by combining data available in the Data Space and considering assets sharing between members of the community.

1.1 Request DER sizing and economic evaluation service from Data Space App store

The Service Consumer subscribes (via the Broker Service Provider) the service and provides mandatory parameters for service provision, namely: minimum size of the community, maximum distance between member of the communities, percentages of asset sharing, generation technologies and DER assets and capacity constraints, reference costs for technologies (in alternative, this data can be made available in the Data Space by another Data Provider), consumers ID to consider (optional), type of community (REC /CEC), business model to be considered, that depends on the financing and energy sharing mechanisms selected [1] and determines the objective function to optimize (e.g., total energy costs minimization, profit of specific members maximization, self-consumption maximization), the pricing mechanism for the internal transactions (part of the business model and can be, for example the mid-market rate or an intermediate market rate, a price computation based on the supply-demand ratio, or a price based on a post-delivery pool simulation, as described latter in Section 7), and can also constraint the problem to be solved (e.g., minimum revenues based on a transaction fee, etc.). The Service Consumer can be an energy consumer (or prosumer), or a flexibility services provider or energy services company or an energy supplier. Moreover, it can be a non-energy player such as financing services supplier or a poverty mitigation organization.

1.2 Request data from the Data Space

Required data (typical consumption profiles or past consumption values of the consumers considered, investments costs of technologies, opportunity costs of the consumers (usually their full electricity tariffs, i.e. including the energy cost and access tariffs and any other charge, of buying energy from their retailers when they are consuming, or selling energy back to their retailers when they are generating), and weather conditions or typical generation profiles of renewable generators) from the Data Space is requested by the Data Consumer (which also takes the Service Provider role) to the Data Provider.

1.3 Obtains consent for data sharing

The Data Provider obtains consent from the Data Owner for sharing its data in the context of service (1.1) provision. The Data Owner can be an energy consumer or sub-meter data hub operator. In fact, energy consumers can act as Data Owners and Service Consumer at the same time.

1.4 Data transaction

Transaction of data occurs between the Data Provider and the Data Consumer, with the Data Space Clearing House as intermediary (it keeps logs of this transaction).

1.5 Runs optimization problem

Using the transferred data, the optimization problem is solved to find the optimal installed capacity in the REC / CEC considering an optimal operation with perfect information. The outputs are: i) size of the assets to be installed, ii) schedules of the flexible assets, iii) energies transacted and transaction prices, iv) individual and collective investments, operation, and total costs.

1.6 Output data transferred to the Service Consumer

The Service Consumer receives the output data, and the service provision/transaction is completed.

2. Estimation of flexibility potential and energy cost savings from thermal domestic loads

2.1 Request service from Data Space App Store

The Service Consumer subscribes (via the Broker Service Provider) the service. The Service Consumer can be an energy consumer, a flexibility services' provider, an energy services company, or an energy supplier willing to get an estimation of flexibility from specific consumers (thermal loads) or estimation of flexibility potential (per consumer or in each area).

2.2 Request data from the Data Space

Required data from the Data Space is requested by the Data Consumer (which is the Service Provider) to the Data Provider in text or similar format:

Mandatory:

- o EWH specification sheet including:
 - storage capacity volume (I or m³) or mass (kg)
 - minimum and maximum delivery temperature (°C or K)
 - stored water temperature limit (°C or K)
 - functioning wattage (W)
- o Sensor-based stored water temperature (°C or K), at least to measure the outlet water temperature (historical dataset)
- o Minimum (for the end-user comfort) outlet water temperature (°C or K)

• Optional, but recommended:

- o total hot water usage (flow rate if not provided, inferred from historical dataset)
- o network inlet water temperature (if not provided, estimated from water companies' data)
- o Average shower duration (min), where historical data form other users or reference/typical values can be used
- o Average showers start period (hour of the day), where historical data form other users or reference/typical values can be used
- Number of showers per day (numerical), where historical data form other users or reference/typical values can be used

2.3 Obtains consent for data sharing

The Data Provider obtains consent from the Data Owner for sharing its data in the context of service (2.1) provision. The Data Owner can be an energy consumer or sub-meter data hub operator. Energy consumers can act as Data Owners and Service Consumer at the same time.

2.4 Data transaction

Transaction of data occurs between the Data Provider and the Data Consumer, with the Data Space Clearing House as intermediary (it keeps logs of this transaction).

2.5 Runs optimization problem

Using the transferred data, an optimization problem is solved to enhance the operation of the EWH, by shifting loads based on a set of usage and operating restrictions (user and device defined, respectively), ensuring that the user's usage schedule is not changed.

2.6 Output metadata transferred to the Service Consumer

The Service Consumer receives the output data and/or thermal appliance model, and the service provision/transaction is completed. The service consumer can integrate this information in the PUC 3. The output is:

- EWH functioning calendar (binary variable for EWH operation status on/off heating trigger)
- Estimated energy cost savings
- Estimated flexibility offered by the EWH at the time interval, calculated as the difference between the previously scheduled baseline consumption and the effectively and modified scheduled consumption.

3. Simulation of the operation of the REC / CEC and computation of the internal transactions price

3.1 Request internal pricing and REC / CEC operation service from Data Space App store

The Service Consumer subscribes (via the Broker Service Provider) the service and provides mandatory metadata for service provision, namely: community structure and percentages of asset ownerships and other business model descriptors to be defined for each model, such as the energy sharing and the selected internal pricing mechanism [1]. (1)

3.2 Request data from the Data Space

Required data (typical consumption profiles or past consumption values of the consumers considered, assets capacities, integral electricity tariffs of buying and selling energy between consumers and retailers, and weather conditions or typical generation profiles of renewable generators) from the Data Space is requested by the Data Consumer (which is the Service Provider) to the Data Provider.

3.3 Obtains consent for data sharing

The Data Provider obtains consent from the Data Owner for sharing its data in the context of service (3.1) provision. The Data Owner can be an energy consumer or sub-meter data hub operator. In fact, energy consumers can act as Data Owners and Service Consumer at the same time.

3.4 Data transaction

Transaction of data occurs between the Data Provider and the Data Consumer, with the Data Space Clearing House as intermediary (it keeps logs of this transaction).

3.5 Runs selected pricing mechanism and settlement

The algorithm to compute the pricing mechanism selected (i.e., mid-market rate intermediate-market rate, supply-demand ratio or based on a post-delivery pool, see section 7) is executed to determine the price for the internal transactions for each settlement period. To do so, for each community member a consumption or generation bid is assumed depending on if its energy balance is a net consumption or a net generation. Then, for each of these bids, the price is the opportunity cost of selling, in case of net generation, or of buying, in case of net consumption. Then, depending on the pricing mechanism selected, the mid-market rate or an intermediate-market rate can be computed from the maximum selling price and minimum buying price as a simple or weighted average respectively, the price based on the supply-demand ratio based on [2], or the post-delivery pool-based price by simulating a post-delivery [3] pool (possibly with an iterative procedure if there are flexible resources). In addition, based on the energy sharing mechanism selected and the consuming or generating behavior of the community members, the internal transactions among them are determined and settled using the computed price and the ownership of the community assets, providing the individual and collective energy bills.

3.6 Output metadata transferred to the Service Consumer

The Service Consumer receives the output data (energy transacted among prosumers and transaction prices, schedules of the flexible assets, internal settlement and collective and individual operation costs or energy bills), and the service provision/transaction is completed.

7.3.1.5 Key performance indicators (KPI)

Key performance indicators (KPI)			
ID	Date	Description	Reference to mentioned use case objectives
1-SO2		% of cost reduction in the energy bill for individuals / consumers	Related to specific objectives (1)-(3)
5-ET7		Nº of viable sharing economy business models by the end of the project	Objective (1) – community sizing considering joint ownership of assets; Objective (2) – pricing simulation considering energy sharing

Enershare D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

07-2		Objective (1) – financing sector for assets
	№ of non-energy sectors that	renting; Objective (2) – Poverty reduction
	benefit from Data Space	associations studying financial schemes to
		reduce energy poverty of vulnerable citizens

7 3 1 6 Use case conditions

Use case conditions

Assumptions

In terms of geographical scope, we will consider two possibilities: CEC do not bind to immediate vicinity (according to Recast Internal Electricity Market Directive); REC must be in the vicinity of renewable energy projects owned/developed by that community (according to Recast Renewable Energy Directive).

Prerequisites

- Availability of smart meters or sub-metering in consumers premises
- Data owner consent for data sharing
- Operational Data Space where consumers share time series data about active power consumption (at least from the household meter, but sub-metering is also relevant) and static data about installed assets (PV, EV, etc.) and socio-economic data.

7.3.1.7 Further information to the use case for classification / mapping

Classification information

Relation to other use cases

GAIA-X use cases (https://gaia-x.eu/use-cases/):

- Smart, privacy-preserving coordination of energy supply and demand
- Local communities Local communities of energy setting up and decentralization
- Local communities Stadtwerke/local open data for business models3

Comments: Mainly focused in "static" data about assets and without exploring the value/benefits of cross-silo data sharing, i.e., the combinatorial value of data.

BRIDGE use cases (https://smart-grid-use-cases.github.io/):

- Optimal sizing of a Local Energy System (E-LAND)
- Optimization of operation of Local Energy System (E-LAND)
- Procida Local energy community (GIFT)

<u>Comments:</u> Concerns mainly assets sizing and does not consider consumer pairing to create a local energy community. Mainly focused on the optimal operation of the microgrid / local energy community.

Level of depth

High level use case (HLUC)

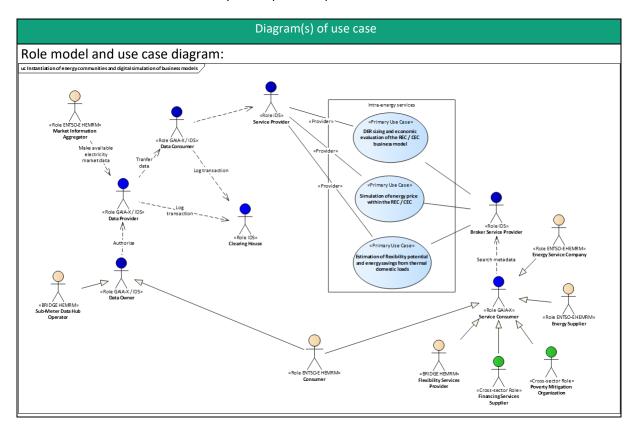
Prioritization

High level of priority

Generic, regional or national relation

Generic

Nature of the use case



Business use case	
Further keywords for classification	
Energy communities, distributed energy resources, business models, sizing, optimisation	

7.3.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.3.3 Technical details

7.3.3.1 Actors

Actors		
Grouping	Group description	
Harmonized electricity market role	The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.	

Actor name	Actor type	Actor description	Further information specific to this use case
Consumer	Role	A party that consumes energy.	
Energy Service Company	Role	A party offering energy-related services to the Party Connected to Grid, but not directly active in the energy value chain or the physical infrastructure itself. The Energy Service Company (ESCO) may provide insight services as well as energy management services.	
Energy Supplier	Role	An Energy Supplier supplies electricity to or takes electricity from a Party Connected to the Grid at an Accounting Point.	
Energy Trader	Role	A party that is selling or buying energy.	
Market Information Aggregator	Role	A party that provides market related information that has been compiled from the figures supplied by different actors in the market. This information may also be published or distributed for general use.	
Resource Aggregator	Role	A party that aggregates resources for usage by a service provider for energy market services.	

	Actors									
Groupii	ng	Group description								
BRIDG	E	A Differential Analysis with Respect to the ENTSO-E — ebIX — EFET Model"								
Actor name	Actor type	Actor description	Further information specific to this use case							
Flexibility Services Provider	Role	A party providing flexibility services to energy stakeholders via bilateral agreements or flexibility markets.								
Sub-Meter Data Hub Operator	Role. BRIDGE	Sub-meter Data Hub Operator in the sphere of an Energy Service Provider operating on not validated data.								

	Actors									
Grouping	;	Group description								
Data Space Role	e Model	Roles from the data value chain that can be taken by energy and no energy actors.								
Actor name	Actor type	Actor description	Further information specific to this use case							
Data Owner	Role. IDS / GAIA-X	Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self-sovereign control over the data.								
Data Provider	Role. IDS / GAIA-X	Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.								
Data Consumer	Role. IDS / GAIA-X	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.								
Service Provider	Role. IDS	A Service Provider receives data from a Data Provider (or another Service Provider) and either returns the calculation result to the same or directs it to an indicated Data Consumer (which then is a Service Consumer at the same time). A service offers e.g. data analysis, data integration, data cleansing, or semantic enrichment to improve the quality of the data exchanged.								
Broker Service Provider	Role. IDS	Intermediary that stores and manages information about the data sources available in the Data Spaces. As the role of the Broker Service Provider is central but non-exclusive, multiple Broker Service Providers may be around at the same time (e.g., for different application domains). The activities of the Broker Service Provider mainly focus on receiving and providing metadata.								
Clearing House	Role. IDS	Intermediary that provides clearing and settlement services for all financial and data exchange transactions. It might be possible that the two roles "Clearing House" and "Broker Service Provider" are assumed by the same								

EnershareD2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

		organization, as both roles require acting as a trusted intermediary between the Data Provider and the Data Consumer.	
		Services are offered	
Service Consumer	Role. GAIA-X	by a Service Provider and consumed by a	
		Service Consumer.	

7.3.3.2 References

					References	
No.	Reference s Type	Reference	Status	use	Originator / organizatio	Link
1	paper	A. Moreno, J. Villar, C. S. Gouveia, J. Mello, and R. Rocha, "Investment s and Governance Models for Renewable Energy Communitie s," in EEM 2022, Sep.	d	Financing and energy sharing mechanis ms		https://doi.org/10.1109/EEM54602.2022.992100 4
2	paper	B. Zhang, Y. Du, E. G. Lim, L. Jiang, K. Yan, "Design and Simulation of Peer-to- Peer Energy Trading Framework with Dynamic Electricity Price," in AUPEC 2019, Nov.	Publishe d		IEEE	https://doi.org/10.1109/AUPEC48547.2019.21194 8

3	Scientific	J. Mello, J.	Publishe		IEEE	https://doi.org/10.1109/EEM49802.2020.922190
	paper	Villar, R. J.	d			1
		Bessa, M.				
		Lopes, J.				
		Martins, and				
		M. Pinto,				
		"Power-to-				
		Peer: a				
		blockchain				
		P2P post-				
		delivery				
		bilateral				
		local energy				
		market," in				
		EEM 2020,				
		Sep. 2020.				
4	Technical	Reference	Public	Role	IDSA	https://internationaldataspaces.org/wp-
	report	arthictectur		model		content/uploads/IDS-Reference-Architecture-
		e model.				Model-3.0-2019.pdf
		Version 3.0				
5	Technical	GAIA-X:	Public	Role	GAIA-X	https://www.bmwk.de/Redaktion/EN/Publikation
	report	Technical		model		en/gaia-x-technical-
	'	Architecture				architecture.pdf?blob=publicationFile&v=7
						· - ·

7.3.4 Step by step analysis of use case

7.3.4.1 Overview of scenarios

	Scenario conditions									
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre-condition	Post-condition				
1	DER sizing and economic evaluation of the REC / CEC business model		Service Provider	requests service	'	optimal sizing				
2	Estimation of flexibility potential and energy savings from thermal domestic loads				information from the EWH available; typical profiles	energy cost savings and flexibility				

			shower duration and start; sensor for outlet water	
Simulation of energy price within the REC / CEC		requests service	and generation	operation costs or energy bills

7.3.4.2 Steps-Scenarios

				Scena	rio			
Scenario DER sizing and economic evaluation of the REC / CEC business model name:								
Step No.	Event	Name of process activity	Description of process/activity	Service	Information producer (actor	Information receiver (actor)	Information exchanged (IDs)	Requirement, R-IDs
1.1	Triggering event	service	Request DER sizing and economic evaluation service from Data Space App store		Consumer		I-1, I-2, I-3, I-4, I-6, I-7, I-9, I-10	QoS-3, QoS 6, CONF-1
1.2	1		Send meta-data for service provision					QoS-1, QoS-2 QoS-3, DM-6
1.3	1	•	Request data from the Data Space	-		Data Provider	I-6	QoS-1, QoS-2 QoS-3
1.4	3	Obtain consent	Obtain consent for data sharing	CREATE	Data Provider	Data owner	I-11	SEC-5
1.5	3	Transfer data	Transaction of data occurs	GET	Data Provider	_	I-13, I-14	QoS-1, QoS-2 QoS-3, QoS-4 QoS-5, QoS-6 CONF-1, CONF-2, SEC 2, SEC-3, SEC 4, SEC-5, SEC

								6, SEC-7, SEC- 8, DM-1, DM- 5, OTHER-1
1.6	3	Transfer data	Transaction of data occurs	GET	Clearing House	Data Consumer / Service Provider	I-13, I-14	QoS-1, QoS-2, QoS-3, QoS-4, QoS-5, QoS-6, CONF-1, CONF-2, SEC- 2, SEC-3, SEC- 4, SEC-5, SEC- 6, SEC-7, SEC- 8, DM-1, DM- 5, OTHER-1
1.7	5	Run optimization	Optimization problem solved to find the optimal installed capacity in the REC / CEC		Service Provider	Service Provider		
1.8	5	Transfer results	Output metadata transferred to the Service Consumer		Service Provider			SEC-1, SEC-7, SEC-8

	Scenario								
Scenar name:	cenario Estimation of flexibility potential and energy cost savings from thermal domestic loads								
Step No.	Event	Name of process activity	Description of process/activity	Service	Information producer (actor	Information receiver (actor)		Requirement, R-IDs	
2.1	Triggering event	Request service	Request Estimation of flexibility potential and energy savings service from Data Space Appostore		Service Consumer	Broker Service Provider		QoS-3, QoS- 6, CONF-1	
2.2	1	Request data	Request data from the Data Space	CREATE	Data Consumer / S Provider	Data Provider	I-6	QoS-1, QoS-2, QoS-3	
2.3	2	Obtain consent	Obtain consent		Data Provider	Data owner	l-11	SEC-5	

2.4	2	Transfer data	Transaction of data occurs	GET	Data Provider	House	16, I-17, I	QoS-1, QoS-2, QoS-3, QoS-4, QoS-5, QoS-6, CONF-1, CONF-2, SEC- 2, SEC-3, SEC- 4, SEC-5, SEC- 6, SEC-7, SEC- 8, DM-1, DM- 5, OTHER-1
2.5	2	Transfer data	Transaction of data occurs	GET	Clearing House	Арр	16, I-17, I	QoS-1, QoS-2, QoS-3, QoS-4, QoS-5, QoS-6, CONF-1, CONF-2, SEC- 2, SEC-3, SEC- 4, SEC-5, SEC- 6, SEC-7, SEC- 8, DM-1, DM- 5, OTHER-1
2.6	4	Run optimization	Optimization problem solved to enhance the operation of the EWH		Service Provider	Service Provider		
2.7	4	Transfer results	Output metadata transferred to the Service Consumer		Service Provider	Service Consumer	O-6, O-7, O 8	SEC-1, SEC-7, SEC-8

	Scenario										
Scenarioname:	Simulation of the operation of the REC / CEC and computation of the internal transactions price										
Step No.	Event	Name of process activity	Description of process/activity	Service	Information producer (actor			Requirement, R-IDs			
3.1	Triggering event	Request service	Request internal pricing and REC / CEC operation service from Data Space App store		Service Consumer	Broker Service Provider	I-3, I-4, I-6, I-7, I-9, I-10	QoS-3, QoS- 6, CONF-1			

			1		1	1		1
3.2		Send meta- data	Send meta-data for service provision			Service Provider		QoS-1, QoS-2, QoS-3, DM-6
3.3		Request data	Request data from the Data Space	CREATE		Data Provider	I-6	QoS-1, QoS-2, QoS-3
3.4	13	Obtain consent	Obtain consent for data sharing	CREATE	Data Provider	Data owner	I-11	SEC-5
3.5		Transfer data	Transaction of data occurs	GET	Data Provider	Clearing House	I-13, I-14, O-1, O-4	QoS-1, QoS-2, QoS-3, QoS-4, QoS-5, QoS-6, CONF-1, CONF-2, SEC- 2, SEC-3, SEC- 4, SEC-5, SEC- 6, SEC-7, SEC- 8, DM-1, DM- 5, OTHER-1
3.6		Transfer data	Transaction of data occurs	GET	House	Data Consumer / Service Provider	I-13, I-14, O-1, O-4	QoS-1, QoS-2, QoS-3, QoS-4, QoS-5, QoS-6, CONF-1, CONF-2, SEC- 2, SEC-3, SEC- 4, SEC-5, SEC- 6, SEC-7, SEC- 8, DM-1, DM- 5, OTHER-1
3.7		Run optimization	The algorithm to compute the selected pricing mechanism is executed to determine the price for the internal transactions for each settlement period			Service Provider		
3.8		Transfer results				Service Consumer		SEC-1, SEC-7, SEC-8

7.3.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

		Information exchanged	
Information exchanged, ID	Name of information	Description of information exchanged	Requirement, R-IDs
I-1	Community size	Minimum size of the community	SEC-8, DM-6
I-2	Max distance	Maximum distance between member of the communities	SEC-8, DM-6
I-3	% asset sharing	Percentages of asset sharing	SEC-8, DM-6
1-4	DER technologies	Generation technologies and DER assets and capacity constraints	SEC-8, DM-6
I-5	DER OPEX	Reference costs for technologies	SEC-8, DM-6
I-6	Consumer ID	Consumers ID to consider	SEC-1, SEC-2, SEC-4, SEC-7, OTHER-1
I-7	Community type	Type of community (REC /CEC)	SEC-8, DM-6
I-8	Opportunity cost	Opportunity costs of the consumers (usually their full electricity tariffs)	SEC-1, SEC-2, SEC-4, SEC-7, OTHER-1
1-9	Business model	Business model that determines the objective function to optimize (e.g., total energy costs minimization, profit of specific members maximization, self-consumption maximization)	SEC-8, DM-6
I-10	Pricing mechanism	Pricing mechanism for the internal transactions and can be: 1) mid-market rate, 2) intermediate market rate, 3) based on the supply-demand ratio, 4) based on a post-delivery pool	SEC-8, DM-6
I-11	Consent	Explicit consent for data use	SEC-8, DM-6
I-12	Electrical energy consumption	Electrical energy consumption: past measurements or typical profile	SEC-1, SEC-2, SEC-3, SEC-4, SEC-5, SEC-6, SEC-7, SEC-8, DM-1, DM-2, DM-3, DM-4, DM-6, OTHER-1
I-13	Weather-based generation	Weather conditions or typical generation profiles of renewable generators	SEC-1, SEC-2, SEC-4, SEC-7, OTHER-1
I-14	DER CAPEX	Investments costs of DER technologies	SEC-8, DM-6
O-1	DER size	Size of the DER assets to be installed	SEC-8, DM-6
O-2	Schedules	Schedules of the flexible assets	SEC-8, DM-6
O-3	Transactions	Energies transacted and transaction prices	SEC-8, DM-6
0-4	Investements	Individual and collective investments, operation, and total costs	SEC-8, DM-6
O-5	Internal settlement	Internal settlement and collective and individual operation costs or energy bills	SEC-8, DM-6

I-15	Min outlet water	Minimum (for the and user comfort) outlet	SEC 1 SEC 2 SEC 2 SEC 4
1-15	Min outlet water	Minimum (for the end-user comfort) outlet	
	temp	water temperature (°C or K)	SEC-5, SEC-6, SEC-7, SEC-8,
			DM-1, DM-2, DM-3, DM-4,
			DM-6, OTHER-1
I-16	Average shower	Average shower duration (min), where	SEC-1, SEC-2, SEC-3, SEC-4,
	duration	historical data form other users or	SEC-5, SEC-6, SEC-7, SEC-8,
		reference/typical values can be used	DM-1, DM-2, DM-3, DM-4,
			DM-6, OTHER-1
I-17	Average shower	Average shower start period (hour of the	SEC-1, SEC-2, SEC-3, SEC-4,
	start	day), where historical data form other	SEC-5, SEC-6, SEC-7, SEC-8,
		users or reference/typical values can be	DM-1, DM-2, DM-3, DM-4,
		used	DM-6, OTHER-1
I-18	Number of	Number of showers per day, where	SEC-1, SEC-2, SEC-3, SEC-4,
	showers per day	historical data form other users or	SEC-5, SEC-6, SEC-7, SEC-8,
		reference/typical values can be used	DM-1, DM-2, DM-3, DM-4,
			DM-6, OTHER-1
I-19	EWH specification	storage capacity - volume (I or m3) or mass	SEC-8, DM-6
	sheet	(kg); minimum and maximum delivery	
		temperature (°C or K); stored water	
		temperature limit (°C or K); functioning	
		wattage (W)	
I-20	Stored water	Sensor-based stored water temperature	SEC-1, SEC-2, SEC-3, SEC-4,
	temperature	(°C or K), at least to measure the outlet	SEC-5, SEC-6, SEC-7, SEC-8,
		water temperature	DM-1, DM-2, DM-3, DM-4,
			DM-6, OTHER-1
I-21	Total hot water	Total hot water usage (flow rate – if not	SEC-1, SEC-2, SEC-3, SEC-4,
	usage	1F	SEC-5, SEC-6, SEC-7, SEC-8,
		– optional	DM-1, DM-2, DM-3, DM-4,
			DM-6, OTHER-1
I-22	Inlet water	Network inlet water temperature	SEC-1, SEC-2, SEC-3, SEC-4,
	temperature		SEC-5, SEC-6, SEC-7, SEC-8,
			DM-1, DM-2, DM-3, DM-4,
			DM-6, OTHER-1
0-6	Energy cost	Energy savings resulting from the optimal	SEC-8, DM-6
	savings	operation	
0-7	Estimated	Estimated flexibility offered by the EWH at	SEC-8, DM-6
	flexibility	each time interval	
O-8	EWH functioning	EWH functioning calendar (binary variable	SEC-8, DM-6
	calendar	for EWH operation status – on/off heating	,
		trigger)	
		001	l

7.3.6 Requirements

		Requirements
Categories ID	Category name for requirements	Category description
QoS	Quality-of-service	Availability of the system, such as acceptable downtime, recovery, backup, rollback, etc. Quality of Services issues also

		address accuracy and precision of data, the frequency of data
		exchanges, and the necessary flexibility for future changes.
		Reflect the typical, probable, or envisioned communication
		configurations that are relevant to the use case step. These
CONF	Configuration	configuration issues include numbers of devices and/or
CONF	Configuration	systems, expected growth of the system over time, locations,
		distances, communications types, network bandwidth, existing
		protocols, etc., but only from the user's point of view.
		Assess how different security measures applied to different
SEC	Security	items can potentially interact and either leave security holes or
		make user interfaces very laborious and possibly unworkable.
		Covers both the management of the data exchanges in each
		Use Case step and the management of data at either end if that
DM	Data management	management is impacted by data exchanges. It should not
5	Butu management	address database design, but should concentrate on the user
		requirements for the interfaces to databases and other data
		handling applications.
OTHER	Others	Political, legal, financial, or just very specific to a particular step.
Requirement R-ID	Requirement	Requirement description
	name	
QoS-1	Elapsed time response	Less than 1 minute
	requirements for	
	exchanging data	
QoS-2	Contractual timelines for	Less than 1 minute
	exchanging data is	
	required	
QoS-3	Availability of	99.9% + availability - Allowed outage: 9 hours per year
	information flows	
QoS-4	Accuracy of data	Requires quality flag indicating at least normal and not normal;
	requirements	Age of data needs to be knowable; Time skew of data must be
		known; Adequate accuracy can be assumed
QoS-5	Frequency of data	Upon request (for service provision); Periodicity greater than a
	exchanges	few seconds (for data acquisition)
QoS-6	Commonly used	Failure detection; Automatic restart; Automatic failover to
	techniques for meeting	second source of data or function; Automatic failover of
	quality of service	communication channels to secondary channel; Backup of data
	·	Transaction rollback; QoS monitoring; Alarming on QoS failure
CONF 1	exchange	Degrees was a seas Data disasses will lead of data asta
CONF-1	Communication access	Request-response; Data discovery; Use of data sets
CONF-2	services requirements Data exchange methods	Client conver publish subscribe
		Client-server; publish-subscribe
SEC-1	Eavesdropping: Ensuring	Crucial
	confidentiality, avoiding	
	illegitimate use of data,	
	and preventing	
	unauthorized reading of	
SEC 3	data, is:	Crucial
SEC-2	Information integrity	Crucial
	violation: Ensuring that	

	data is not changed or	
0.00	destroyed is:	
SEC-3	Authentication:	Crucial
	Masquerade and/or	
	spoofing: Ensuring that	
	data comes from the	
	stated source or goes to	
	authenticated receiver	
	is:	
SEC-4	Information theft:	Crucial
	Ensuring that data	
	cannot be stolen or	
	deleted by an	
	unauthorized entity is:	
SEC-5	Denial of Service:	Crucial
	Ensuring unimpeded	
	access to data is:	
SEC-6	This data exchange has	Logging of all information exchanged during this interaction is
	the following	required
	requirements with	
	respect to proof of	
	conformance and/or	
	non-repudiation with	
	contractual agreements:	
SEC-7	Authentication and	Private (secret) key encryption
	Access Control	
	mechanisms commonly	
	used with this data	
	exchange	
SEC-8	Procedural security	Audits
	measures commonly	
	used with this data	
	exchange	
DM-1	Management of large	Some part of step involves handling large volumes of data
	volumes of data that are	
	being exchanged	
DM-2	Data consistency and	Day-by-day synchronization
	synchronization	
	management across	
	systems	
DM-3	Management of timely	Contractual/required time windows for multiple access are
	access to data by	within minutes
	multiple different users	
DM-4	Validation of data	Data must include quality codes to indicate its validity; Data
	exchanges	from different sources must be validated against each other;
		Data mapping of data item names is required for data from
		different sources
DM-5	Management of	Each data exchange could entail different types of data
	accessing different types	3
	of data to be exchanged	
	o. aata to be excitatinged	1

	Data format requirements	Standardized data objects
OTHER-1	GDPR compliance	Full

7.3.7 Common terms and definitions

	Common terms and definitions
Term	Definition
Renewable Energy Community (REC)	A legal entity: (a) which, in accordance with the applicable national law, is based on open and voluntary participation, is autonomous, and is effectively controlled by shareholders or members that are located in the proximity of the renewable energy projects that are owned and developed by that legal entity. (b) the shareholders or members of which are natural persons, SMEs or local authorities, including municipalities. (c) the primary purpose of which is to provide environmental, economic or social community benefits for its shareholders or members or for the local areas where it operates, rather than financial profits.
Citizen Energy Community (CEC)	A legal entity that: (a) is based on voluntary and open participation and is effectively controlled by members or shareholders that are natural persons, local authorities, including municipalities, or small enterprises. (b) has for its primary purpose to provide environmental, economic or social community benefits to its members or shareholders or to the local areas where it operates rather than to generate financial profits. (c) may engage in generation, including from renewable sources, distribution, supply, consumption, aggregation, energy storage, energy efficiency services or charging services for electric vehicles or provide other energy services to its members or shareholders.
Mid market rate	Pricing mechanism based on computing the average between the price of buying price from the retailer and and the price of selling energy back to the retailer, as defined in [2]. When different community members have different retailers and tariffs, we propose to use the maximum selling price and minimum buying price. It is necessary to determine, for each consumer, its net balance, to know if it is consuming, therefore buying, or generating, therefore selling energy.
Intermediate market rate	Based on the mid market rate, but instead of a simple average, we propose a weighted average to allow giving more weight to the buying or to the selling prices. It is again necessary to determine, for each consumer, its net balance, to know if it is consuming, therefore buying, or generating, therefore selling energy.
Supply-demand ration based price	This procedure provids a price proably closer to a real market outcome [2], since it takes into account the amount of supply availabe compared to the existing demand, providing a better economic signal. It is again necessary to determine, for each consumer, its net balance, to know if it is consuming, therefore buying and contributing to the aggregated demand, or generating, therefore selling energy and contributing to the aggregated supply.
Post-delivery pool based price	This price is the result of simulating a post-delivery pool, post-delivery local markets being described in [3 . In the simplest case, the simulation consists in crossing the aggregated supply and demand curves. To do so, for each consumer, its net balance is computed, to know if it is consuming, therefore

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

buying energy and producing a buying bid at its opportunity cost (usually the integral tariff of buying energy from its retailer), or generating, therefore selling energy and producing a selling bid at its opportunity cost (usually the integral tariff of selling energy to its retailer). With these bids, the the aggregated supply and demand curves of the pool can be computed. If there are no flexible resources, the price is computed by crossing these curves. In case there are flexible resources whose dispatch depends on the transactions price, an iterative procedure can be used to estimate the schedule, determining again the consuming or generating behavior of the consumers, reestimating the pool price, until prices and schedules convergence. Alternatively, it may be possible to maximize the welfare so as to determine, in one step optimization problem, the price and the flexible resources schedules.

- 7.4 Pilot 2 Use Case 2c Detect irregularities in energy consumption in households with seniors living alone
 - 7.4.1 Description of the Use Case
- 7.4.1.1 Name of the use case

		Use case identification
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case
P2-PT-C		Detect irregularities in energy consumption in households with seniors living alone

7.4.1.2 Version management

		Version man	agement	
Version No.	Date	Name of author(s)	Changes	Approval status
0.1	17.10.2022	Linda Rülicke, Volker Berkhout, Marie Eberhard	Initial creation	

7.4.1.3 Scope and objectives of use case

	Scope and objectives of use case
Scope	Improve quality of living and energy consumption in the households of seniors living alone and provide alarm services to notify relatives or health care agents in case of a trigger event.
Objective(s)	 Detect irregularities in energy consumption in households with seniors living alone
Related business case(s)	Assisted living digital service offering

7.4.1.4 Narrative of Use Case

Narrative of Use Case
Short description
Establish insurance and healthcare services for the community (and for the providers) by learning energy utilization patterns to recognize potential problems and trigger alarms. This aims mainly at senior citizens with
reduced mobility or disability problems and do not have close assistance or conditions to call for help in case of

need. The use case will also monitor changes in domestic environment (temperature, humidity, etc.), enabling an assessment of the impact on the current health status of the citizen.

Complete description

People worldwide are living longer. According to the WHO, the number of people aged 60 years and older was 1 billion, but this number is expected to rise to 1.4 billion by 2030 and 2.1 billion by 2050 [1]. This increase is occurring at an unprecedented pace and will accelerate in coming decades, particularly in developing countries.

The number of elderly people (aged 65 years or more) living in the EU is projected to reach 129.8 million inhabitants in 2050, with their relative share of the total population of 29.4% as compared to approximately 1/5 at the start of 2019 [2]. At the same time, a growing number of these are living alone in the EU, notably women. In 2018, the share of older women living in households composed of a single person was 40.2% across the EU-27, while the share for older men was 21.8 % [2].

Elderly people are more likely to suffer from issues like falls, trips, and accidents [3]. In case of medical emergency, the risk of serious injury and death as an outcome is higher if they live alone since there might be no assistance around and they may not be capable of calling for help.

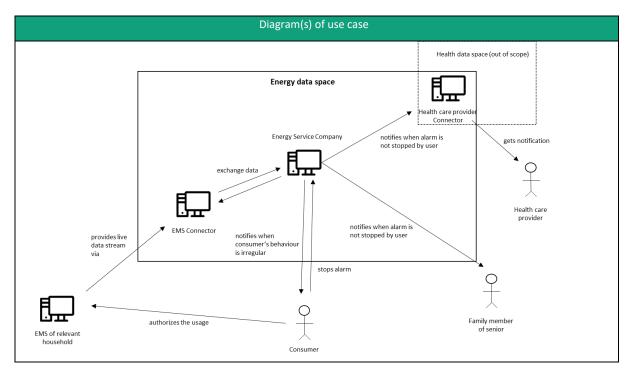
This use case intends to explore the concept of an assisted living digital service offer where the health status of a senior living alone is disclosed by any change in the household's energy consumption. It is assumed that aging adults have daily routines, and it is possible to determine a typical consumption profile that reflects their habits and considers seasonality from historical data. By comparing this profile with real-time data communicated via EMS, the Energy Service Provider algorithm detects if there is an event that deviates from the normal, triggering a notification that initiates a two-step process. The former is to call the senior citizen automatically or activate an alarm that he/she needs to either answer or deactivate. If this happens, the process stops; otherwise, it continues to the latter step which is to inform the family/caregivers. This service would bring several benefits to the different parties; namely, it would support the end-user's independence and improve his/her quality of life, by promoting timely assistance in the event of a medical emergency, while also reassuring the family and/or caregivers on the senior safety.

7.4.1.5 Key performance indicators (KPI)

	Key performance indicators (KPI)								
ID	Date	·	Reference to mentioned use case objectives						

7.4.1.6 Use case conditions

	Use case conditions
Assumpt	tions
Prerequi	isites
•	Recruitment of participants needed, especially elderly citizens that live alone Availability of Energy Management System



7.4.1.7 Further information to the use case for classification / mapping

Classification information
Relation to other use cases
Level of depth
High-level Use Case (HLUC)
Prioritization
Mandatory
Generic, regional or national relation
Generic
Nature of the use case
Business
Further keywords for classification
Assisted living, monitoring service, health services

7.4.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.4.3 Technical details

7.4.3.1 Actors

Actors							
Group	oing	Group de	Group description				
Harmonized electricity ma	rket role	The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.					
Actor name	Actor type	Actor description	Further information specific to this use case				
Consumer	Role	A party that consumes electricity	This is a Type of Party Connected to the Grid. Data space roles: Data owner, Data provider, Service Consumer				
Energy Service Company	Role	A party offering energy-related services to the Party Connected to Grid, but not directly active in the energy value chain or the physical infrastructure itself. The Energy Service Company (ESCO) may provide insight services as well as energy management services.	SEL				

Actors								
Grouping Group description								
Peo	ple	Representation of individuals participating in the process						
Actor name Actor type		Actor description	Further information specific to this use case					

Enershare D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Family member of senior	Human	A person related to the senior living in the relevant household. (Simulated during project)
Health care provider	Human	A person or medical institution caring for the senior's health. (simulated during project)

Actors						
Grouping		Group description	Group description			
Data space role model		Roles from the data value chain that can be taken energy actors.	by energy and non-			
Actor name	Actor type	Actor description	Further information specific to this use case			
Data Owner	Role. IDS / GAIA-X	Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self-sovereign control over the data.				
Data Provider Role. IDS / GAIA-X		Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.				
Data Consumer	Role. IDS / GAIA-X	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.				
Clearing House	Role. IDS	Intermediary that provides clearing and settlement services for all financial and data exchange transactions. It might be possible that the two roles "Clearing House" and "Broker Service Provider" are assumed by the same organization, as both roles require acting as a trusted intermediary between the Data Provider and the Data Consumer.	Communication of notifications and alarms may be logged by a Clearing House.			

Service Consumer	Role. GAIA-X	Services are offered by a Service Provider and consumed by a Service Consumer.	
------------------	--------------	--	--

Actors						
Groupin	g	Group description				
Information :	Systems	Technology systems that s data	end, edit, save or delete			
Actor name	Actor type	Actor description	Further information specific to this use case			
EMS of relevant household	System	The Energy Management System manages and monitors the household's energy usage.				
EMS Connector System		Connects the Energy Management System to the data space.				
Health care provider connector	System	Connects the health care provider to the data space.				

7.4.3.2 References

	References								
No.	Reference s Type	Referenc e		t on	Originator / organizatio n	Link			
[1]	Internet				WHO	https://www.who.int/health-topics/ageing#tab=tab 1			
[2]	Internet				EU	https://ec.europa.eu/eurostat/documents/3217494/11478 057/KS-02-20-655-EN-N.pdf/9b09606c-d4e8-4c33-63d2- 3b20d5c19c91?t=1604055531000			
[3]	Internet				WHO	https://www.who.int/news-room/fact-sheets/detail/falls			

7.4.4 Step by step analysis of use case

7.4.4.1 Overview of scenarios

	Scenario conditions										
No.	o. Scenario Scenario Primary actor Triggering event Pre-condition Post-condition name										
	Detection of irregularities in seniors' energy consumption										

7.4.4.2 Steps-Scenarios

					Scenario					
Scenario Detection of irregularities in energy consumption of seniors citizen name:										
Step No.	Event	Name of process activity	Description of process/activity	Service	Informationproducer (actor	Information receiver (actor)	Information exchanged (IDs)	Requirement, R-IDs		
1.1		Initial setup EMS	Provide live data stream of energy consumption		EMS System	Energy Service Company	-1 -2 -3 -4 -5	P2A-NF-04 P2A-NF-05, P2A-NF-06, P2A-NF-07		
1.2		Initial setup Health Care	Connect to Health data space		Health care provider Connector		I-7 I-8			
1.3		Algorithm development	Real time analysis service		Energy Service Company		I-1 I-2 I-3 I-4 I-5	P2C-F-01		
1.4		Notification irregularity	Notify senior about irregularity		Energy Service Company	Consumer	I-9	P2C-F-02 P2C-F-03 P2C-F-07		
1.5		Notification alarm	Trigger alarm via health data space		Energy Service Company	Consumer	I-10	P2C-F-02 P2C-F-04		
1.6			Service Providers notifies		Energy Service Company	Health care provider	I-10 I-11	P2C-F-05		

		health care providers				
1.7	Notification family	Service Providers notifies family members	Energy Service Company	Family member of senior	_	P2C-F-06

7.4.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

Information exchanged				
Information exchanged, ID	Name of information	Description of information ex- changed	Requirement, R-IDs	
I-1	Temperature	Ambient temperature		
I-2	Humidity	Ambient humidity		
I-3	current	Electrical current		
I-4	voltage	Electrical voltage		
I-5	power	Electrical active power		
I-6	Total/energy	Cumulative energy		
I-7	ID Health Care	Identification to connect to the relevant health care provider		
I-8	ID senior	Identification to determine an elderly person		
I-9	Notification signal irregularity	Data to signal an irregularity		
1-10	Notification signal alarm	Data to signal an alarm		
I-11	Alarm Cause	Explanation of the event that caused the alarm.		

7.4.6 Requirements

	Requirements	
Categories ID	Category name for requirements	Category description
F	Functional	Functional requirements
Requirement R-ID	Requirement name	Requirement description
P2C-F-01	Learn on historical data	Learn and test an analytics approach on historical data

P2C-F-02	Detect irregularity	Analyse real time data of households
P2C-F-03	Trigger irregularity alarm with senior	Trigger an alarm if an irregularity occurs and criteria are met
P2C-F-04	Trigger full alarm with senior	Trigger an alarm if criteria and conditions are met
P2C-F-05	Trigger full alarm with health care provider	Trigger an alarm if criteria and conditions are met
P2C-F-06	Trigger full alarm with senior family members	Trigger an alarm if criteria and conditions are met
P2C-F-07	Validate alarm	Validate if the alarm could be a false alarm by e.g. calling the senior automatically
P2C-F-08	Initiate subsequent process	Initiate a subsequent process by notifying family members or an health care provider

	Requirements	
Categories ID	Category name for requirements	Category description
NF	Non-Functional	Non-Functional requirements
Requirement R-ID	Requirement name	Requirement description
P2A-NF-01	Data Reliability	Data shall be consistent, reliable, transparent and accessible only to authorized users
P2A-NF-02	Data Accessibility	Store data in a safe and tamperproof manner
P2A-NF-03	Data Protection	Handle personal data according to GDPR guidelines
P2A-NF-04	Frequency of data exchanges	Periodicity greater than a few seconds (for data acquisition)
	Commonly used techniques for meeting quality of service requirements of this data exchange	Failure detection; Automatic restart; Automatic failover to second source of data or function; Automatic failover of communication channels to secondary channel; Backup of data Transaction rollback; QoS monitoring; Alarming on QoS failure
P2A-NF-06	Authentication and Access Contro mechanisms commonly used with this data exchange	
P2A-NF-07	Validation of data quality	Data must include quality codes to indicate its validity

7.4.7 Common terms and definitions

Common terms and definitions			
Term	Definition		

ENERSHARE has received funding from <u>European Union's Horizon Europe</u>

Research and Innovation programme under the Grant Agreement No 101069831

7.5 Pilot 2 - Use Case 2d - Suggest maintenance of appliances based on NILM data

7.5.1 Description of the Use Case

7.5.1.1 Name of the use case

Use case identification				
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case		
P2-PT-D		Suggest maintenance of appliances based on NILM data		

7.5.1.2 Version management

Version management						
Version No.	Date	Name of author(s)	Changes	Approval status		
0.1		Linda Rülicke, Volker Berkhout, Marie Eberhard	Initial creation			
0.2		Linda Rülicke, Volker Berkhout	For Final Review			

7.5.1.3 Scope and objectives of use case

Scope and objectives of use case				
Scope	Improve quality of living and energy consumption in households by detecting higher energy consumptions of appliances early on and increase energy efficiency by suggesting maintenance or renewal of appliances.			
Objective(s)	Use NILM data to suggest maintenance of appliances or renewal (e.g. fridge)			
Related business case(s)	Digital service offering for preventive maintenance for home appliances with value creation pathways for different actors			

7.5.1.4 Narrative of Use Case

Narrative of Use Case				
Short description				
Use NILM data to detect appliance retrofit opportunities in private rental sector and social housing, taking into				
account the types of properties and socio-economic data. This information will be shared with consumers and				
housing providers.				

Complete description	

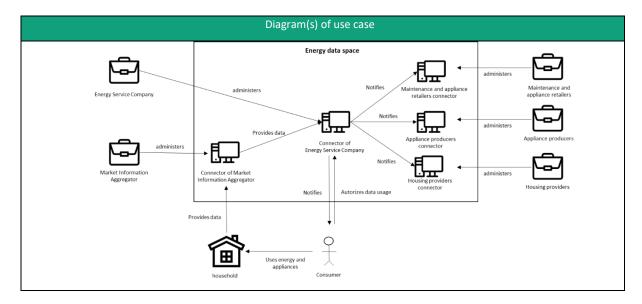
7.5.1.5 Key performance indicators (KPI)

	Key performance indicators (KPI)					
ID	Date	·	Reference to mentioned use case objectives			

7.5.1.6 Use case conditions

	Use case conditions
Assumptio	ons
Prerequisi	ites
•	Availability of Energy Management System

7.5.1.7 Further information to the use case for classification / mapping


Classification information						
Relation to other use cases						
Pilot 2C						
Level of depth						
High level use case (HLUC)						
Prioritization						
Mandatory						
Generic, regional or national relation						
Generic						
Nature of the use case						
Business						
Further keywords for classification						
Predictive Maintenance, remote monitoring						

7.5.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

7.5.3 Technical details

7.5.3.1 Actors

Actors							
Group	oing	Group description					
Harmonized electricity ma	rket role	The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.					
Actor name Actor type		Actor description	Further information specific to this use case				
Consumer	Role	A party that consumes electricity	This is a Type of Party Connected to the Grid. Data space roles: Data owner, Data Provider, Service consumer				
Energy Service Company Role		related services to the Party Connected to Grid,	Data Consumer, Service				

infrastructure itself. The
Energy Service Company
(ESCO) may provide
insight services as well as
energy management
services.

Actors							
Grou	ping	Group de	escription				
Third F	arties	Representation of compani process	ies participating in the				
Actor name	Actor name Actor type Actor description						
Housing Provider	Business A party that owns the participant's apartment/house.		Data space roles: Data provider, Service consumer				
Maintenance and appliance retailers	Business	A party that sells appliances/ provides their maintenance.	Will be simulated during the project Data space roles: Service consumer				
Appliance producers	Business	Produce appliances in consumer's household.	Will be simulated during the project Data space roles: Service consumer				

Actors								
Grouping	:	Group description	Group description					
Data space role	model	Roles from the data value chain that can be taken by energy and non- energy actors.						
Actor name Actor type		Actor description	Further information specific to this use case					
Data Owner	Role. IDS / GAIA-X	Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self-sovereign control over the data.						

Data Provider	Role. IDS	Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.	
Data Consumer	Role. IDS / GAIA-X	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.	
Service Consumer	Role. GAIA-X	Services are offered by a Service Provider and consumed by a Service Consumer.	

Actors							
Group	ping	Group description					
Informatio	n Systems	Technology systems that s data	end, edit, save or delete				
Actor name	Actor name Actor type		Further information specific to this use case				
EMS of relevant household	System	The Energy Management System manages and monitors the household's energy usage.					
EMS Connector	EMS Connector System						
Maintenance and appliance retailers connector	System	Connects the maintenance and appliance retailers to the data space.					
Appliance producer connector	System	Connects the appliance producer to the data space					

Enershare D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Housing provider connector	System	Connects the housing provider to the data space.	
----------------------------	--------	--	--

7.5.3.2 References

	References									
No. References Reference Status Impact on use Originator / Link Type case organization										

7.5.4 Step by step analysis of use case

7.5.4.1 Overview of scenarios

	Scenario conditions									
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre-condition	Post-condition				
	NILM analysis for opportunities of maintenance or renewal of appliances									

7.5.4.2 Steps-Scenarios

	Scenario										
Scenario name:	Scenario NILM analysis for opportunities of maintenance or renewal of appliances name:										
Step No.	Event	Name of process activity	Description of process/ activity	Service	Informationproducer (actor	Information receiver (actor)	Information exchanged (IDs)	Requirement, R-IDs			

1	Provide 1day aggregate of NILM- analysis and sensor data to data space	Market Information Aggregator	Energy Service Company	l-1	P2D-F-01
2	Detect appliance health status	Energy Service Company			
3	Notify consumer	Energy Service Company	Consumer	I-2	P2D-F-04
4	Notify appliance retailers and maintenance providers via data space	Energy Service Company	Maintenance and appliance retailers	I-3	P2D-F-02
5	Provide aggregated analysis to appliance producers via dataspace	Energy Service Company	Appliance producers	I-4	P2D-F-03
6	Notify housing providers via data space	Energy Service Company	Housing Providers	I-5	P2D-F-05

7.5.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

	Information exchanged			
Information exchanged, ID	Name of information	Description of information ex- changed	Requirement, R-IDs	
I-1	NILM data	Data collected from NILM devices in households	P2D-F-01	
I-2	Analytical results consumer	Analytical result of NILM analysis which is provided to the consumer living in the household	P2D-F-04	
1-3	Analytical results retailer	Analytical result of NILM analysis which is provided to the appliances retailer in order to provide maintenance services	P2D-F-02	
1-4	Analytical results producer	Analytical result of NILM analysis which is provided to the appliance producer in order to improve product design	P2D-F-03	

I-5	Analytical result	Analytical result of NILM	P2D-F-05
	housing providers	analysis which is provided to	
		the housing providers	

7.5.6 Requirements

	Requirements	
Categories ID	Category name for requirements	Category description
F	Functional	Functional requirements
Requirement R-ID	Requirement name	Requirement description
P2D-F-01	Collect NILM data from households	
P2D-F-02	Communication to appliance retailer via data space	
P2D-F-03	Communication to appliance producer via data space	
P2D-F-04	Communication to consumer	
P2D-F-05	Communication to housing provider via data space	

	Requirements	
Categories ID	Category name for requirements	Category description
NF	Non-Functional	Non-Functional requirements
Requirement R-ID	Requirement name	Requirement description
P2D-NF-01	Data Reliability	Data shall be consistent, reliable, transparent and accessible only to authorized users
P2D-NF-02	Data Accessibility	Store data in a safe and tamperproof manner
P2D-NF-03	Data Protection	Handle personal data according to GDPR guidelines

7.5.7 Common terms and definitions

Common terms and definitions		
Term	Definition	

- 7.6 Pilot 3 Use Case 3 Optimal multi-energy vector planning electricity vs heat
 - 7.6.1 Description of the Use Case

7.6.1.1 Name of the use case

	Use case identification			
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case		
P3-SI	Distribution, Transmission and generation / Station, Operations and Enterprise	Optimal multi-energy vector planning - electricity vs heat		

7.6.1.2 Version management

	Version management					
Version No.	Date	Name of author(s)	Changes	Approval status		
0.1	17.10.2022	Linda Rülicke, Volker Berkhout, Marie Eberhard	Initial creation			
0.2	9.02.2023	Andrej Čampa	First draft			
0.3	15.02.2023	Andrej Čampa	Improved according to feedback			

7.6.1.3 Scope and objectives of use case

Scope and objectives of use case		
Scope	The Energy-Climate Atlas platform constitutes a unique set of innovative methodological approaches and tools that enable cities, local communities, and energy system operators to take an important step forward in energy planning, reliable and secure supply and ensuring a high quality of life.	
Objective(s)	 (1) Data aggregation, pre-processing, and visualisation in Energy-Climate Atlas (2) Data analytics for populating feature stores with measurement, contextual and behavioural data to profile, segment and cluster users according to corresponding services / engagement programmes (3) Flexibility potential assessment of the electric power system (4) Development of heat flexibility valorisation strategies across different actors while maintaining digital sovereignty (5) Planning of coordinated measures between district heating and electric power systems operators to secure demand and achieve climate goals 	

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Related business case(s)

- Improving energy supply in the power grid
- Cross-sector planning and operation of infrastructure and assets
- Planning of infrastructure coupling (heat and electricity distribution) by utilizing flexibility potential

7.6.1.4 Narrative of Use Case

Narrative of Use Case

Short description

The use case focuses on sector coupling between heat and electric power systems, which can be done through cogeneration or power-to-heat generation and storage. In the context of district heating and the use of technologies such as heat pumps and seasonal thermal storage, great potential can be seen for providing flexibility to the electric system. However, to realise the full potential of thermal flexibility, close cooperation between all actors in a given geographic area of district heating and the logical clusters of users involved is required. In terms of infrastructure planning and assessment of flexibility potential, electricity and heat distribution network capacities must be geographically mapped along with photovoltaic, biomass, hydropower, and geothermal sources, while operation requires additional finegrained profiling and segmentation of users, as well as technical means for managing distributed systems.

Complete description

In the context of aggressive climate targets set by global economies, the heating sector faces the greatest challenge in CO2 emissions. To meet energy efficiency and emissions reduction targets, district heating networks, the use of heat pumps and seasonal heat storage have been identified as measures with the greatest potential to increase energy flexibility. This opens up the possibility of increasing the share of renewable energy by coupling the heat and power sectors through balancing the cross-energy systems. The goal of the use case is to provide decision support at the individual user, heat/electricity utility, or community level through data aggregation, pre-processing, visualization, and analytic services.

To achieve this, the use case will apply:

- Data aggregation, pre-processing and visualization to evaluate applicability and plan adoption of measures to meet the forecasted energy demand and their impact.
- Data analytics to populate the future store with contextual and behavioural data.
- Assess the flexibility potential of the electric system through the data analytics of system-level
 electricity data related to heating and cooling demands, distributed heating operational and
 forecast data, and data on renewable energy potential and climate targets. The goal is to plan
 actions to valorize heat flexibility across different actors while maintaining digital sovereignty.
- The platform will focus on expanding the unique set of innovative methodological approaches and tools for coordinated planning of cross-sector interactions in order to secure demand and achieve climate targets.

The introduced innovative methodological approaches and tools presented will enable cities, local communities, and energy system operators to take an important step forward in energy planning, ensure reliable and secure supply, and ensure a high quality of life. Furthermore, this will support the transition to the fourth generation of district heating systems characterized by: i) digitalization, ii) decentralization and iii) improved energy efficiency through the use of energy flexibility across sectors.

7.6.1.5 Key performance indicators (KPI)

	Key performance indicators (KPI)			
ID	Name	Description	Reference to mentioned use case objectives	
2-ET1		% increase of data assets accessible and reusable through the Data Space		
LEI1-ET1	Energy flexibility	Flexibility from district heating and water systems integrated in the power system operation	(3), (4)	
LEI3-ET1	Flexibility demonstration	End-to-end fully interoperable demonstration with energy flexibility (heat and EV flexibility demonstrated in Slovenia and Italy)	(3), (4), (5)	

7.6.1.6 Use case conditions

Use case condition

Assumptions

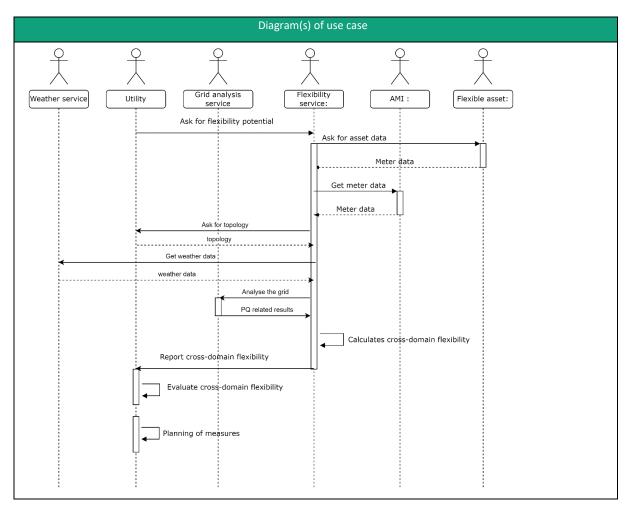
- Informed consent of user is required (calorimeters).
- Labelled data for model creation and/or calibration
- Availability of historical data from all assets with the overlapping time period
- Historical weather data is available for locations of interest

Prerequisites

- The user consent has to be contractually specified
- Topology of the area of interest
- Energy prices for cross-domain comparison
- Costs of potential investments

7.6.1.7 Further information to the use case for classification / mapping

Classification information		
Relation to other use cases		
Level of depth		
High level use case (HLUC)		
Prioritization		
Mandatory		
Generic, regional or national relation		
Regional		
Nature of the use case		
Technical / System		
Further keywords for classification		



DSO, DR, DER, TSO

7.6.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.6.3 Technical details

7.6.3.1 Actors

Actors				
Grouping	Group description			
Smart grid domain	Actors involved in the smart grid domain			

Actor name	Actor type	Actor description	Further information specific to this use case
Utility	Role	'	Act as data provider and data user. It also owns the data and responsible for investment planning.
AMI	System	infrastructure	Metering instruments such as smart meters, calorimeters and other energy meters
Flexible asset	System	All the asset that can be potentially controlled	Heat pumps, heat storage and district heating

Actors						
Grou	ping	Group d	escription			
Informatio	on Systems	Information management	platforms			
Actor name	Actor type	Actor description	Further information specific to this use case			
Weather service	System	Weather service provider	Forecasting and historical weather for a specific location			
Grid analysis service	System	Service that analyses the Electric grid	Service analysis the MV grid for possible congestion and power quality issues for different realistic and hypothetical future scenarios			
Flexibility service	System	Analytic service	Service that evaluates the flexibility potential over the cross-energy domain.			

Enershare D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Data Space Connector	System	Connects the specified data to the data space	

Actors						
Grouping	;	Group description				
Data space role	model	Roles from the data value chain that can be taken energy actors.	by energy and non-			
Actor name	Actor type	Actor description	Further information specific to this use case			
Data Owner	Role. IDS / GAIA-X	Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In this sense, the Data Owner retains self-sovereign control over the data.				
Data Provider	Role. IDS	Provides data for exchange between a Data Owner and a Data Consumer. The Data Provider is in most cases the same as the Data Owner, but not necessarily.				
Data Consumer	Role. IDS / GAIA-X	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.				
Service Provider	Role IDS	Services are offered by a Service Provider and consumed by a Service Consumer.				
Service Consumer	Role. IDS	Services are offered by a Service Provider and consumed by a Service Consumer.				

7.6.3.2 References

Defendance
References

No. R	References	Reference	Status	Impact on use	Originator /	Link
Ţ	Гуре			case	organization	

7.6.4 Step by step analysis of use case

7.6.4.1 Overview of scenarios

	Scenario conditions								
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre-condition	Post-condition			
1	Flexibility assessment	According to the cross-energy domain asses the flexibility potential for the area of interest	Flexibility service	demand.		Energy flexibility provided			
2	Planning of measures	According to available flexibility, create a plan of the most promising measures.	Utility	Due to possible congestion in the feature, the evaluation of the feasibility and effectiveness of different measures is needed. On-demand.	Calculated flexibility	Planned measures			

7.6.4.2 Steps-Scenarios

	Scenario							
Scenario Flexibility assessment name:								
Step No.	Event	Name of process activity	Description of process/activity	Service	Informationproducer (actor)	Information receiver (actor)	Information exchanged (IDs)	
1	Get data		Get data from metering devices	GET		Flexibility service		R-DA-1, RDA- 2, R-DA-3
2	Get Asset	data	Create ML model for	GET		Flexibility service	I-2	R-DA-1

EnershareD2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

	data		federated learning app					
3	Get topology	data			Utility	Flexibility service	I-3	R-DA-2
4	Get weather	data	Get weather data	GET	Weather service	Flexibility service	I-4	R-DA-1
5	Analyse grid	processing	Analyse power grid capabilities	EXECUTE	Grid analysis service	Flexibility service	I-5	
6	Calculate flexibility		Analyse grid and estimates the flexibility potential	EXECUTE	Flexibility service	Flexibility service	I-6	
7	Provides results	results	Provide results about flexibility potential	REPORT	Flexibility service	Utility	I-7	

				5	Scenario			
Scenari o name:	Planning o	f measures						
Step No.	Event	Name of process activity	Description of process/activity	Service	Informationproduce r (actor)	Information receiver (actor)	Informatio n exchanged (IDs)	Requirement, R-IDs
1	Get flexibility potential	Get report	Gets calculated flexibility potential	GET	Flexibility service	Utility	I-7	
2	Evaluate cross- domain flexibility	Processin g	Evaluate the calculated flexibility for the are of interest and available asset	EXECUTE	Utility	Utility		
3	Planning of measures	Processin g	Calculates	EXECUTE	Utility	Utility	I-8	R-I-1

7.6.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

	Information exchanged						
Information exchanged, ID	Name of information	Description of information ex- changed	Requirement, R-IDs				
I-1	Metering data	Measurements	R-DA-1, R-DA-2, R-DA-3				
I-2	Flexible asset characteristics	Nominal power, operating type, operation settings, type	R-DA-1				
I-3	Topology	Grid topology	R-DA-1				
I-4	Weather data	Measurements	R-DA-1				
I-5	Analysis	Results produced by simulations of the grid	R-DA-3				
I-6	Optimization	Results produced by multidomain optimization	R-DA-3				
I-7	Report	Decision support					
I-8	Report	Results for investment planning	R-I-1				

7.6.6 Requirements

Requirements				
Categories ID	Category name for requirements	Category description		
R-DA-1		Requirement linked to the necessary data to be available for the use case.		
R-DA-2	Harmonized data	Cross-sector domain data is harmonized according to time		
R-DA-3	Granularity of data	Hourly or 15min granularity of data is required		
R-I-1	Initial state of the planning already available	Investment planning scenario already exists and serves as ground truth.		

7.6.7 Common terms and definitions

Common terms and definitions		
Term	Definition	
Heat pump	Heat pumps are available for cross-energy domain optimization	
District heating	System for district heating that can be used in the cross-energy flexibility calculation.	

D2.1: Use cases' descriptions and list of minimum Data Space building blocks required for pilots

Flexibility	Flexible energy that is available to a zone of interest and can be used to
	perform various optimization scenarios, such as reducing energy consumption,
	improving self-consumption, reducing investment or energy costs

- 7.7 Pilot 4 Use Case 4 Digital Twin for optimal data-driven Power-to-Gas planning
 - 7.7.1 Description of the Use Case
- 7.7.1.1 Name of the use case

Use case identification			
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case	
	P2G simulation optimization	and Digital Twin for optimal data-driven Power-to-Gas planning	

7.7.1.2 Version management

	Version management					
Version No.	Date	Name of author(s)	Changes	Approval status		
0.1	5.12.2022	Sotiris Pelekis	Initial creation			

7.7.1.3 Scope and objectives of use case

	Scope and objectives of use case
Scope	The aim of this pilot is to create a Digital Twin for optimal data-driven Power-to-Gas (P2G) planning. The P2G Digital Twin, will model multiple scenarios for hydrogen production and storage from RES under different energy demand profiles. A first system will perform useful profiling, comparisons, and forecasts of the customers' demand general the factors providing understanding of the factors that influence the decision-making process for the use of natural gas and green hydrogen in the energy mix. A second system will create long, mid- and short-term scenarios of the required green hydrogen production and renewable energy.
Objective(s)	The objective of the case study is to form a combined optimization platform, named TwinP2G, coupling the electricity transmission system with natural gas demands, leveraging a Digital Twin architecture that will enable multi-resolution simulations involving P2G technologies and (regenerative) hydrogen fuel cells. TwinP2G will enable data- and simulation-driven P2G and RHFC optimal planning leveraging RES surplus for green hydrogen production via electrolysis.
Related business case(s)	

7.7.1.4 Narrative of Use Case

Narrative of Use Case

Short description

Producing hydrogen from low-carbon energy is costly at the moment and the development of hydrogen infrastructure is slow and holding back widespread adoption. Virtual environments are required to analyse different scenarios for a quicker and safer integration of hydrogen in the energy system. From renewable sources (such as wind and photovoltaic) to electrolyser capacity, to buffers (such as energy and hydrogen storage), multiple variables and data sources must be considered to meet the increased energy demand. In this respect, the technology of Data Spaces offers great potential for hydrogen promotion to accelerate the energy transition. In this direction, this pilot aims to develop a Digital Twin application for enabling the design of thorough P2G use cases in Greece in order to assess and optimize the several quantities related with P2G investments (e.g. electrolyser, buffer and fuel cells optimal capacity and locations).

Complete description

This use case will develop TwinP2G, a digital twin (DT) platform, for enabling the design and sharing of simulation based experiments based services between two main personas: data scientists (DEPA experts) and end-users (DEPA executives).

Initially, a digital combined simulation and optimization platform, named TwinP2G, coupling the electricity transmission system with natural gas demands, leveraging a DT architecture that will enable multi-resolution simulations involving P2G technologies and hydrogen fuel cells. TwinP2G will enable data- and simulation-driven P2G and RHFC optimal planning leveraging RES surplus for green hydrogen production via electrolysis. The simulator will compose of 5 main components:

- A data warehouse integrating external data through IDSA connectors where possible. Data will initially originate from IPTO² (electrical power demand, RES generation, long-term grid planning, electrical grid topologies), DESFA³ (hourly / daily gas flows at entry and exit points, natural gas grid topologies) and other organizations (e.g. Eurostat, local and national grid topologies etc.)
- <u>A simulation and optimization platform</u> (DT core) involving physics- and data- driven simulations accompanied by optimization capabilities. PyPSA (short-term simulation) and OSeMOSYS (long-term simulation) are examined as the main technologies of interest here. This components also leverages gas demand and electricity generation and load forecasts to empower its simulations.
- A forecasting toolkit developed within the I-NERGY H2020 project and further developed within EnerShare that is developed following the MLOps principles. The forecasting component will feed the DT core with gas demand and electricity generation and load forecasts.
- A front-end that serves the main user roles (personas): a data scientist (coding and modelling expert) and an energy engineer (deep understanding of energy systems but limited coding skills). The first persona will leverage a coding platform (subcomponent 1) to develop and share their experiments while the second will leverage a visualization engine (tightly related to Task 6.5 subcomponent 2) to visualize the results of the experiments in question.

7.7.1.5 Key performance indicators (KPI)

Key performance indicators (KPI)								
ID	ID Date Description Reference to mentioned use							

² https://www.admie.gr/en

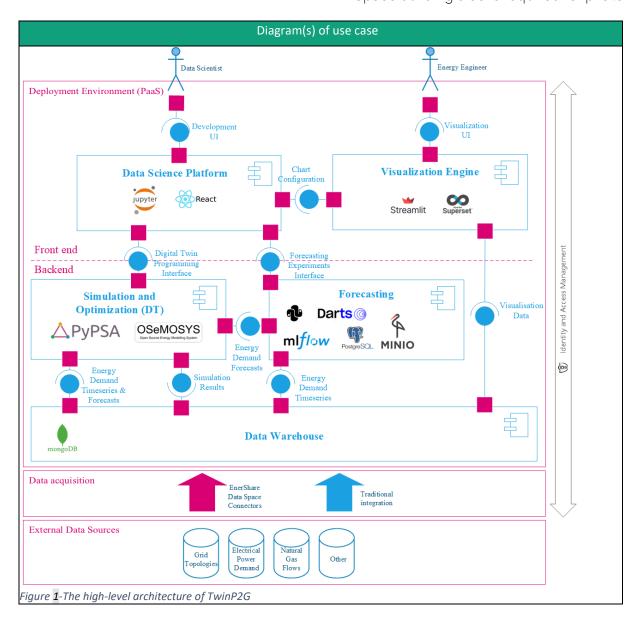
³ https://www.desfa.gr/

		case objectives		
05-4	Digital Twin (Green Hydrogen)	Related to UC main objective		
5-ET4	Nº of stakeholders using the green hydrogen digital twin	Related to main UC objective and its acceptance		
LEI4-ET1	Optimise capital expenditure (CAPEX), whilst reducing risk	Related to the results of UC main objective and its operational outcome		

7.7.1.6 Use case conditions

	Use case conditions								
Assum	Assumptions								
Prereq	uisites								
•	Electrical Energy demand time series.								
•	RES generation time series for the areas of interest.								
•	Cost of potential equipment and technologies to be invested on (electrolysers, RHFC, buffers etc.).								
•	Grid topology of the area of interest.								

7.7.1.7 Further information to the use case for classification / mapping


Classification information
Relation to other use cases
Level of depth
High – Level Use Case (HLUC)
Prioritization
Mandatory
Generic, regional or national relation
Regional and maybe national
Nature of the use case
Technical
Further keywords for classification
Power-to-gas, Digital Twin, Hydrogen, Sector Coupling, Power Flow Simulation, Optimization, Flexibility, Microgrid

7.7.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.7.3 Technical details

7.7.3.1 Actors

Actors						
Grouping Group description						
•	Users involved in the modelling and interpretation of the data					

Actor name	Actor type	Actor description	Further information specific to this use case			
Domain Expert (En Engineer – EE)	ergyhuman	interpretation of the simulation result from a	This person will be responsible for the interpretation of the outcomes of the methods developed in the pilot			
Data Scientist (DS)	human	Data analyst responsible for the modelling of the digital twin in question using TwinP2G	- I			

	Actors										
Grou	ping	Group de	Group description								
Informatio	n Systems	Information management p	latforms								
Actor name	Actor type	Actor description	Further information specific to this use case								
Data Providers	Web Page, APIs	Data sources: IPTO, DESFA, Eurostat APIs and excel files.									
Data Warehouse	Database	Database for storing the raw time series data of measurement data									
Data Space Connector	System	Connects the specified data to the data space									
Other Data Ingestion Mechanisms	System	Connects dataset to the warehouse / dataspace									
Simulation and Optimization Platfom	System	Allows for modelling Digital Twins and running optimization tasks									

Coding Platform	System	Permits the data scientist to interact with the DT and the forecasting toolkit either via UI or code.	
Visualization Engine	System	Used by the EE to monitor simulation and forecast results and metrics leveraging them for decision support regarding future P2G investments	
Forecasting Toolkit	System	The forecasting component will feed the DT core with gas demand and electricity generation and load forecasts. It will be triggered by the DS.	

7.7.3.2 References

	References								
	Refer ences Type			Impact on use case	Origin ator / organ izatio n	Link			
1	epap er	Brown, T., Hörsch, J., & Schlachtberger, D. (2017). PyPSA: Python for Power System Analysis. <i>Journal of Open Research Software</i> , <i>6</i> (1). https://doi.org/10.5334/jors.18	lishe d	_	PyPS A	https://pypsa.org/			
	al Paper	P. Fu, D. Pudjianto, X. Zhang, and G. Strbac, "Integration of Hydrogen into Multi-Energy Systems Optimisation," Energies 2020, Vol. 13, Page 1606, vol. 13, no. 7, p. 1606, Apr. 2020, doi: 10.3390/EN13071606	ishe d	DT's					
3	al Paper	Q. Zeng, J. Fang, J. Li, and Z. Chen, "Steady-state analysis of the integrated natural gas and electric power system with bi-	ishe						

Positi on paper	Accessed: Oct. 31, 2022.d [Online]. Available: https://www.entsog.eu/power-	she I	-	ENTS Oe- ENTS Og	https://www.entsog.eu/power-gas
Journ al Paper	gas QuQuarton and S. Samsatli, P "Power-to-gas for injection into is the gas grid: What can we learnd from real-life projects, economic assessments and systems modelling?", Renewable and Sustainable Energy Reviews, vol. 98, pp. 302–316, Dec. 2018, doi: 10.1016/J.RSER.2018.09.007.	she I			
Thesi s	M. Qadrdan, "Modelling of an Integrated Gas and Electricity Network with Significant Wind Capacity," 2012.		Conceptualization of a combined Gas and Electricity Network. (CGEN)		https://core.ac.uk/download/pdf/400 07561.pdf
al Paper	Y. Lu, T. Pesch, and A. Benigni, P "Simulation of coupled power is and gas systems with hydrogen-d enriched natural gas," <i>Energies</i> (Basel), vol. 14, no. 22, Nov. 2021, doi: 10.3390/en14227680.	she			https://www.mdpi.com/1996- 1073/14/22/7680/htm
rence Paper	eGerard, E. Carrera, O. Bernard, P. and D. Lun, "Smart Design of Sereen Hydrogen Facilities: Ad Digital Twin-driven approach," E3S Web of Conferences, vol. 334, p. 02001, 2022, doi: 10.1051/E3SCONF/202233402001.	she I	DT		
rence Paper	C. Diaz-Londono, G. Fambri, A.P. Mazza, M. Badami, and E.is Bompard, "A Real-Time Basedd Platform for Integrating Powerto-Gas in Electrical Distribution Grids," in UPEC 2020 - 2020 55th International Universities Power	she I			

		Engineering Conference, Proceedings, Sep. 2020. doi: 10.1109/UPEC49904.2020.9209 803.				
0	erabl	· · · · · · · · · · · · · · · · · · ·	ishe	inspiration on driving a coupled simulation. Many		https://www.h2020- planet.eu/deliverables
	al Paper	G. Fambri, C. Diaz-Londono, A. Mazza, M. Badami, T. Sihvonen, and R. Weiss, "Technoeconomic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Appl Energy, vol. 312, p. 118743, Apr. 2022, doi: 10.1016/J.APENERGY.2022.118743.	ishe d	Technoeconomic analysis of P2G plant	ET	https://www.sciencedirect.com/scienc e/article/pii/S0306261922001994?via %3Dihub
1 2	Thesi s	Διατριβή, Σ. Ανδρουλάκη, and Ε. Καθηγητής, "Ολοκληρωμένο Μεθοδολογικό Πλαίσιο για την Υποστήριξη Αποφάσεων Προβλημάτων της Ελληνικής Αγοράς Φυσικού Αερίου," Jul. 2020, Accessed: Oct. 07, 2022. [Online]. Available: http://artemis.cslab.ece.ntua.g r:8080/jspui/handle/12345678 9/17917	ishe d	National optimal trajectories for NG imports (long-term). National optimal strategies for selecting NG importers (Shortterm, mid-term planning).		http://artemis.cslab.ece.ntua.gr:8080/ jspui/handle/123456789/17917
3	al Paper	Karamaneas A., Koasidis K., Frilingou N., Xexakis G., Nikas A., and Doukas H., "A stakeholder-informed modelling study of Greece's energy transition amidst an energy crisis: the role of natural gas and climate ambition [Under Review]," Renewable & Sustainable Energy Transition, 2022.	er revi ew	for Greece built on		

7.7.4 Step by step analysis of use case

7.7.4.1 Overview of scenarios

Scenario conditions

No.		Scenario description	Primary actor	Triggering event	Pre-condition	Post- condition
1	Develop and evaluate an electricity only Digital Twin considering fuel cell technologies (short-term horizon)		Data scientist	data scientist to start an experimentation with a Digital Twin to technoeconomically assess a potential RHFC investment.	short-term technoeconomic evaluation of an	
2	Develop and evaluate an electricity only Digital Twin considering fuel cell technologies (long-term horizon)		Data Scientist	Energy Engineer urges the data scientist to start an experimentation with a Digital Twin to techno economically assess a potential RHFC investment.	Necessity for a short-term technoeconomic evaluation of an	<u> </u>
3	Develop and evaluate a sector coupled Digital Twin (natural gas + electricity) (short-term horizon)		Data scientist	data scientist to start an experimentation with a Digital Twin to technoeconomically assess a potential P2G investment.	short-term technoeconomic evaluation of a P2G investment within a sector-	Engineer regarding the
4	Develop and evaluate a sector coupled Digital Twin (natural gas + electricity) (long-term horizon)		Data scientist	data scientist to start an experimentation with a Digital Twin to technoeconomically assess a potential P2G investment.	short-term technoeconomic evaluation of a	Engineer regarding the

7.7.4.2 Steps-Scenarios

	Scenario							
	Scenario Develop and evaluate an electricity only Digital Twin considering fuel cell technologies (short-term horizon)							
Step No.		of process	Description of process/activity	Service	Informationproducer (actor <u>)</u>			Requirement, R-IDs
Similar	Similar to scenario 3 with obvious changes							

	Scenario							
	Scenario Develop and evaluate an electricity only Digital Twin considering fuel cell technologies (long-term name: horizon)							
Step No.		of process	Description of process/activity	Service	Informationproducer (actor <u>)</u>	Information receiver (actor)	Information exchanged (IDs)	
Similar t	Similar to scenario 3 with obvious changes							

					Scenario			
Scenari o name:								
Step No.	Event	Name of process activity	Description of process/ activity	Service	Informationproducer (actor)	Information receiver (actor)	Informatio n exchanged (IDs)	
1		Create Data	Periodically upload new datasets		Data Providers	-	I-2, I-3, I-4	R-F-DA-01, R- F-DA-02, R-F- DA-02, R-F- DA-03, R-NF- 02, R-NF-03
2		Ingest Data	Acquire and preprocess external data for short-term analysis (resampling, aggregations)		Data Space Connector / Other Data Ingestion Mechanisms	Data Warehouse	I-2, I-3, I-4	R-NF-01, R-F- DA-01, R-F- DA-02, R-F- DA-03, R-F- DA-04, R-NF- 02, R-NF-03
3		Trigger forecast	In case of non-automated forecasting process trigger the forecast		Data Scientist	Forecasting Toolkit	I-2, I-3, I-4	
4		Forecast	Forecast (short-term forecasts) natural gas and electricity demands	,	Forecasting Toolkit	-	-	
5		Send forecast			Forecasting Toolkit	Simulation and Optimizatio	I-6, I-7	

6	Code the	The data	Data Scientist	n Platform, Data Scientist Simulation	I-9
	simulation	scientist develops the simulation		and Optimizatio n Platform	
6	Simulate and Optimize	Run short- term simulation and optimizations including both P2G and RHFC	Simulation and Optimization Platform	-	I-1, I-2, I-3, I-4, I-6, I-7
7	Send optimization results		Simulation and Optimization Platform, Data Scientist	Data Warehouse	1-5
8	View optimization results		Data Scientist	-	1-5
9	Send configuratio n data	Configure the Visualization Engine to show appropriate graphs	Data Scientist	Visualizatio n Engine	I-10
	Send visualization data	Visualization data are delivered from the database	Data Warehouse	Visualizatio n Engine	I-7
10	Show visualization s	Show visualizations for decision support	Visualization Engine	Energy Engineer	I-8

	Scenario							
Scenari name:	Scenario Develop and evaluate a sector coupled Digital Twin (natural gas + electricity) (long-term horizon) name:							
Step No.	Event	Name of process activity	Description of process/activity	Service	Information producer (actor)			Requirement, R-IDs
Similar	Similar to scenario 3 with obvious changes							

7.7.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

	Information exchanged					
Information exchanged, ID	Name of information	Description of information exchanged	Requirement, R-IDs			
I-1	Grid topology	Grid topology as envisage by energy engineer	R-NF-01, R-F-DA-04, R-NF-02, R-NF-03			
I-2	Electrical power demand	Power demands as acquired by IPTO or ENTSOe	R-F-DA-02, R-F-I-1, R-NF-02, R-NF-03			
I-3	Natural gas flows	Natural Gas demand as acquired by DESFA	R-F-DA-01, R-F-I-1, R-NF-02, R-NF-03			
I-4	Statistics	Statistics and long-term planning as acquired by IPTO and EUROSTAT	R-F-DA-03, R-F-I-1, R-NF-02, R-NF-03			
I-5	Optimization results	Results produced by the simulation / optimization process	R-F-SIM-01, R-NF-01, R-NF-02, R-NF-03			
I-6	Electrical power demand forecasts	Forecasted electrical power demands as from the Forecasting Toolkit	R-F-DA-02, R-F-I-1			
I-7	Natural gas flow forecasts	Natural Gas electrical power demands as from the Forecasting Toolkit	R-F-DA-01, R-F-I-1			
I-7	Visualization data	Back-end data used for vizualizations	R-F-SIM-01, R-NF-02, R-NF-03			
I-8	Visualizations	Plots demonstrated to the energy engineer through the front-end of the application	R-F-SIM-01, R-NF-04, R-NF-06			
I-9	Code	Code written by the data scientist to program the simulation	R-F-SIM-02, R-NF-05			
I-10	Visualization Configuration	Configuration done to set up the appropriate plots in the Visualization Engine	R-F-VIS-01			

7.7.6 Requirements

	Requirements					
Categories ID	Category name for requirements	Category description				
R-F-XX-XX	Functional	Functional requirements: Required for the system to be functional and provide outputs.				
R-NF-XX	Non-functional	Non-functional requirements: Required for the system to provide outputs of good quality.				

R-F-DA-XX	Data Availability	Necessary data for the use case are available	
R-F-I-XX	Algorithm interfacing APIs	Functional Requirement linked to the availability of software component interfacing APIs	
R-F-SIM-XX	Simulation	Functional Requirement linked to the simulation / optimization process.	
R-F-SIM-XX	Forecast	Requirement linked to forecasts	
R-XX-VIS-XX	Visualisation	Requirement linked to the visualizations	
Requirement RID	Requirement name	Requirement description	
R-NF-01	Availability of DT objective	Energy Engineer has collected specifications of the problem to be solved. (Horizon, Equipment costs, Optimization objective)	
R-F-DA-01	Gas data availability	Requirement linked to the necessary csv / api data for natural gas to be available for download. (DESFA)	
R-F-DA-02	Electrical Power Data Availability	Requirement linked to the necessary csv / api data for natural gas to be available for download. (IPTO)	
R-F-DA-03	Long-term statistic data availability	The necessary csv / api data for long-term projections should be available (Eurostat, IPTO long-term planning, DESFA etc.)	
R-F-DA-04	Availability of DT topology to be simulated	The topology to be simulated should be available	
R-F-SIM-01	Convergence of simulation	The simulation should converge after a finite number of iterations.	
R-F-SIM-02	Code quality	Code should be debugged and therefore functional	
R-F-I-01	Availability of 2-way Data Space Connector	The Data Space Connector interface for communicating with external datasets should be available from the producer side as well.	
R-F-VIS-01	Configuration validity	Configuration should be made in the right format	
R-F-F-01	Forecasts validity	Forecasts should be in the right format	
R-NF-02	Data Reliability	Data shall be consistent, reliable, transparent and accessible only to authorized users	
R-NF-03	Data Accessibility	Store data in a safe and tamperproof manner	
R-NF-04	Service Security	Service should be secure, and identity managed amongst human actors.	
R-NF-05	Code quality	Code should be well documented and understandable	
R-NF-06	Visualisation interpretability	Visualizations should be well understandable and interpretable.	

7.7.7 Common terms and definitions

Common terms and definitions			
Term	Definition		
Fuel cell	A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (hydrogen) and an oxidizing agent (oxygen) into electricity through a pair of redox reactions.		
Electrolyser	Electrolysis is the process of using electricity to split water into hydrogen and oxygen. This reaction takes place in a unit called an electrolyser. Electrolysers can range in size from small, appliance-size equipment that is well-suited for		

	small-scale distributed hydrogen production to large-scale, central production facilities that could be tied directly to renewable or other non-greenhouse-gasemitting forms of electricity production.
Buffer	A tank storing hydrogen
, ,	Power-to-gas (often abbreviated P2G) is a technology that uses electric power (often produced by RES) to produce a gaseous fuel (often hydrogen).

- 7.8 Pilot 5 Use Case 5a Cross-sector Flexibility Services for aggregators and DSO
 - 7.8.1 Description of the Use Case
- 7.8.1.1 Name of the use case

	Use case identification					
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case				
		Cross-sector Flexibility Services for aggregators and DSO				

7.8.1.2 Version management

	Version management						
Version No.	Date	Name of author(s)	Changes	Approval status			
0.1	17.10.2022	Linda Rülicke, Volker Berkhout, Marie Eberhard					

7.8.1.3 Scope and objectives of use case

Scope and objectives of use case						
Scope	deduction of reverse power flows into the distribution grid through optimization					
01: " ()	of self-consumption					
Objective(s)	 Load forecast for household and primary substation and PV feed-in 					
	estimation					
	 Flexibility estimation for each household 					
	o Reduce reverse power flow / Optimization of the grid and maximization					
	of self-consumption					
	 Security Services deployed by DSOs to Consumers 					
	App development					
	 User engagement incl. updating infrastructure based on the use case 					
	needs					
Related business						
case(s)						

7.8.1.4 Narrative of Use Case

Narrative of Use Case

Short description

This UC aims to take advantage of the sources of flexibility offered by cross-sector to reduce the flow of RPF into the power distribution grid and reduce the impact on distribution grid. Optimised grid management, which leads to increased self-consumption and self-sufficiency, reduced losses and detailed observability of parameters in real time, drastically reduces the number of faults that can occur on the grid. For end consumers, this leads to various advantages, such as greater continuity of supply, less environmental impact from their own consumption, greater awareness of their impact on the energy system and a drive towards active and more sustainable behaviour.

Complete description

The consumption of electricity strongly depends on the behaviour and habits of end users, and the demand is practically completely inelastic. This electricity demand curve fits poorly with renewable generation, which is centred in the central hours of the day and is highly dependent on climate. As a consequence the electrical grid is subjected to voltage fluctuations and the reversal of power flows, which can lead to grid faults.

In order to increase the share of renewable energy, it was therefore thought to smartly manage the energy demand so as to bring it closer to the renewable generation curve: this process is called Demand Side Management. The widespread use of real-time sensors, fast data transmission and the presence of a SCADA system makes it possible to build a system that can show users what their consumption is and provide advice on how to better manage electrical loads, save money and benefit the environment.

The active involvement of users has the advantage of creating a culture of awareness of their impact on the environment and their spending, as well as enabling their participation in demand response programmes, so as to support the electricity grid in times of need.

End users can, once aggregated, provide ancillary services to the electricity grid, such as voltage support and frequency regulation; these services are activated on demand, when the grid is in an emergency or alarm condition.

It is therefore intended to assess how the use of electricity demand management, governed by a demand aggregator, can help the grid to manage peak power and reverse flows. An aggregator is an economic entity that involves users and acts as an intermediary between them and the distribution system operator. Users are incentivised to participate for environmental reasons, e.g. by visualising the reduction of electricity losses from the grid, or the increase of locally consumed renewable energy, or for economic reasons with dynamic price variation.

7.8.1.5 Key performance indicators (KPI)

	Key performance indicators (KPI)					
ID	Date		Reference to mentioned use case objectives			
5-ET6		% of electricity savings (reduction of power losses)				

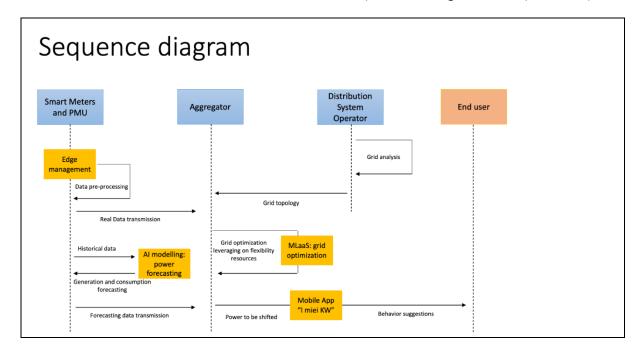
1-SO2	% of cost reduction in the energy	
	bill for consumers	

7.8.1.6 Use case conditions

Use case conditions			
Prerequisites			
Flexibility estimation for each household			
Optimization of the grid and maximization of self-consumption			
Security Services deployed by DSOs to Consumers			

7.8.1.7 Further information to the use case for classification / mapping

Classification information			
Relation to other use cases			
UC 2b			
Level of depth			
Specialized			
Prioritization			
Mandatory			
Generic, regional or national relation			
Generic			
Nature of the use case			
System			
Further keywords for classification			
Distribution grid, Demand response, flexibility			


7.8.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

Diagram(s) of use case

7.8.3 Technical details

7.8.3.1 Actors

Actors					
Group	ping	Group de	Group description		
Harmonized electricity market role		The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.			
Actor name Actor type		Actor description	Further information specific to this use case		
Consumer	Role	A party that consumes electricity	This is a Type of Party Connected to the Grid.		
Metered Data Role Aggregator		A party responsible for the establishment and qualification of measured data from the Metered Data Responsible. This data is aggregated			

		according to a defined set of market rules.
Resource Aggregator	Role	A party that aggregates resources for usage by a service provider for energy market services.
System Operator	Role	A party responsible for operating, ensuring the maintenance of and, if necessary, developing the system in a given area and, where applicable, its interconnections with other systems, and for ensuring the long-term ability of the system to meet reasonable demands for the distribution or transmission of electricity.

Actors					
Grouping	3	Group description	Group description		
Data Space Role	e Model	Roles from the data value chain that can be taken energy actors.	by energy and non-		
Actor name	Actor type	Actor description Further inform specific to this case			
Data Owner Role. IDS / GAIA-X		Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self-sovereign control over the data.			
Data Provider	Role. IDS	Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.			

Data Consumer	Role. IDS / GAIA-X	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.	
Service Consumer Role. GAIA-X		Services are offered by a Service Provider and consumed by a Service Consumer.	

Actors					
Grou	oing	Group description			
Informatio	n Systems	Technology systems that ser data	nd, edit, save or delete		
Actor name	Actor type	Actor description	Further information specific to this use case		
Resource Aggregator Connector	System	Connects the Resource Aggregator to the data space.			
Metered Data Aggregator Connector	System	Connects the Metered Data Aggregator to the data space			
System Operator Connector	System	Connects the System Operator to the data space			
Edge Management	System	Data pre-processing from the Smart Meter devices			
Al modeling: Power forecasting	System	Forecasting platform to predict the generated and consumed energy			

MLaaS Grid Optimization	System	Platform to optimize the grid operation	
Mobile App "I miei KW"	System	Mobile Application to interact with Consumer and to suggest behavioral changes	

7.8.3.2 References

	References						
No.	References Type	Reference			Originator / organization	Link	

7.8.4 Step by step analysis of use case

7.8.4.1 Overview of scenarios

	Scenario conditions					
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre- condition	Post- condition
1	Variable demand response			/	/	/

7.8.4.2 Steps-Scenarios

	Scenario							
Scenar io name:	Variable Demand Response							
Step No.	Even t	T.	Description of process/ activity	Service	Informati onproduc er (actor		Informati on exchange d (IDs)	Requiremen t, R-IDs
1		estimatio n				00 0		P5A-F-02
2		requests		optimization	*	Ressource Aggregator	I-1	P5A-F-05
3		Flexible energy aggregati on	Aggregation of all the			00 0	I-2 I-3 I-4	P5A-F-02
4		Mobile App			Ressource Aggregato r	Consumer		P5A-F-03 P5A-F-04 P5A -NF-06 P5A -NF-08

7.8.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

	Information exchanged				
Information exchanged, ID	Name of information	Description of information ex- changed	Requirement, R-IDs		
I-1	Electrical distribution grid topology and features	Portion on the network topology, with electrical characteristics of the assets			
1-2	Smart meter data - historical	Historical electrical consumption data of consumers			
I-3	Smart meter data - live	Real data of Electrical consumption of consumers			
1-4	Phasor measurement units data	Primary substation electrical data			
I-5	Energy consumption and production forecast	Forecast of the energy produced and consumed based on historical smart meter data			
I-6	Optimized grid topology	Results of the analysis to optimize the grid based on available flexibilities			
I-7	Behavior suggestions	Behavior suggestions that are send to the consumer via a Mobile App to activate flexibilities			

7.8.6 Requirements

	Requirements				
Categories ID	Category name for requirements	Category description			
F	Functional	Functional requirements			
Requirement RID	Requirement name	Requirement description			
P5A-F-01	Edge management	Pre-process smart meter data in order to increase data quality			
P5A -F-02		Forecast the consumption of the households and the RES energy production of the community for a given time			
P5A -F-03	Consumer registration	Consumer should be able to register in the Mobile App to participate in the project			

P5A -F-04	 The mobile App shall be able to send notifications to consumer suggesting a specific behaviour for a given time to reduce grid congestion
P5A -F-05	 Optimize the operation of the grid with the available flexibility information

	Requirements	
Categories ID	Category name for requirements	Category description
NF	Non-Functional	Non-Functional requirements
Requirement R-ID	Requirement name	Requirement description
P5A-NF-01	Data Reliability	Data shall be consistent, reliable, transparent and accessible only to authorized users
P5A -NF-02	Data Accessibility	Store data in a safe and tamperproof manner
P5A -NF-03	Data Protection	Handle personal data according to GDPR guidelines
P5A -NF-04	Code quality	Code should be well documented and understandable
P5A -NF-05	Visualisation interpretability	Visualizations should be well understandable and interpretable
P5A -NF-06	Elapsed time response requirements for interaction of the mobile application	Less than 30 seconds
P5A -NF-07	Commonly used techniques for meeting quality of service requirements of this data exchange	Failure detection; Automatic restart; Automatic failover to second source of data or function; Automatic failover of communication channels to secondary channel; Backup of data Transaction rollback;
P5A -NF-08	Secure communication	Secure communication of sensitive data related to the infrastructure should be provided
P5A -NF-09	Data management	Data harmonization, orchestration and synchronization should be performed
P5A -NF-10	Eavesdropping: Ensuring confidentiality avoiding illegitimate use of data, and preventing unauthorized reading of data	
P5A -NF-11	Information integrity violation: Ensuring that data is not changed or destroyed	
P5A -NF-12	Authentication: Masquerade and/or spoofing Ensuring that data comes from the stated source or goes to authenticated receiver	
P5A -NF-13	Information theft: Ensuring that data cannot be stolen or deleted by an unauthorized entity	

P5A -NF-14	Denial of Service: Ensuring unimpeded access to data	
P5A -NF-15	Authentication and Access Control mechanisms commonly used with this data exchange	
P5A -NF-16	Elapsed time response requirements for exchanging data	Less than 1 minute

7.8.7 Common terms and definitions

Common terms and definitions				
Term	Definition			

- 7.9 Pilot 5 Use Case 5b Services for e-mobility CPOs, EVs drivers and DSO
 - 7.9.1 Description of the Use Case
- 7.9.1.1 Name of the use case

	Use case identification				
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case			
P5-IT-B		Services for e-mobility CPOs, EVs drivers and DSO			

7.9.1.2 Version management

	Version management						
Version No.	Date	Name of author(s)	Changes	Approval status			
0.1	17.10.2022	Linda Rülicke, Volker Berkhout, Marie Eberhard					

7.9.1.3 Scope and objectives of use case

	Scope and objectives of use case				
Scope	Value creation from flexibility provision of electric vehicles to the grid				
Objective(s)	 Use the vehicles to provide flexibility to the grid and reduce grid congestion levels App development/adaption Increase CPO ability to attract EV users to their charging stations Increase CPO revenue Reduce charging session costs for EV users 				
Related business case(s)					

7.9.1.4 Narrative of Use Case

	Narrative of Use Case	
Short description		

Prioritisation of charging and/or parking slot availability in peak hours (e.g. in the night) for consumers sharing EV recharging profiles; dynamic parking pricing aligned to the grid congestion level for consumer who share their mobility patterns with the DSO.

Complete description

Transition to electric mobility was initiated by creating new opportunities and new obstacles: by increasing the number of electric vehicles, the amount of electricity that must be supplied increases and, therefore, a necessary strengthening of the power lines follows. However, through a cooperation mechanism between DSOs (Distribution System Operators), CPOs (Charging Point Operators) and EV users, it is possible to reduce the power grid upgrade magnitude by coordinating the electric vehicles charging. DSO monitors the electricity grid and, thanks to accurate forecasting systems, is able to identify how, when and where to charge electric vehicles to avoid congestion problems. CPO will thus be able to provide a dynamic charging price based on real-time/forecasted DSO needs, to offer an advantageous charging price in charging stations located in congested areas and attract a greater number of EV users increasing its revenue. Finally, EV users will be able to share their charging profiles and acquire priority to charge at a discounted price.

7.9.1.5 Key performance indicators (KPI)

	Key performance indicators (KPI)						
ID	Name	Description	Reference to mentioned use case objectives				
	Charging sessions boost	sessions performed in CPO	Increase CPO ability to attract EV users to their charging stations Reduce charging session costs for EV users				
	Congestion level reduction	Decrease congestion events by 50%	Help DSO to manage the grid congestion level				

7.9.1.6 Use case conditions

Use case conditions

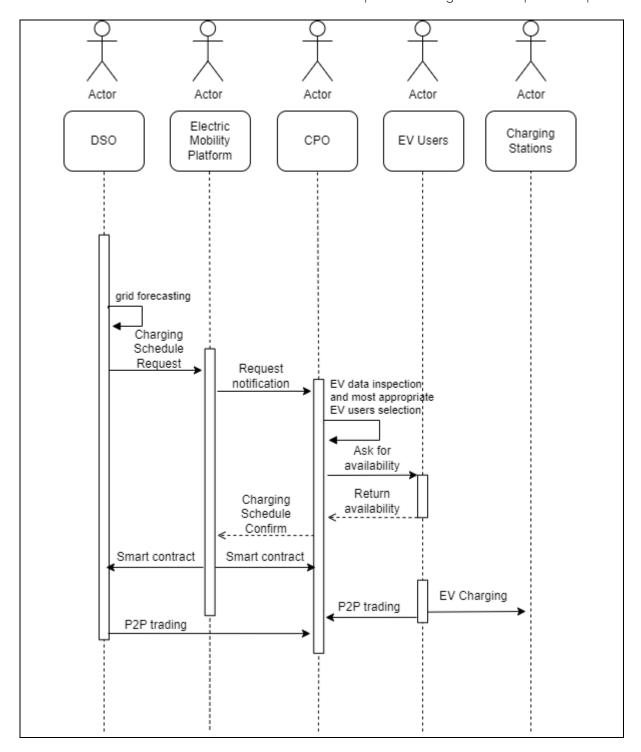
Assumptions

- A community of EV users will be aggregated for flexibility purposes;
- $\circ\quad$ The community presents consumption patterns which can be described as from once a week to every day of the week
- The community main goal will be to reduce energy cost, furthermore there will be an interest to increase renewable energy usage for EV charging

Prerequisites

 EV users have to be equipped with an OBD (On-Board Diagnostic) device to provide their charging data

7.9.1.7 Further information to the use case for classification / mapping


Classification information					
Relation to other use cases					
Pilot 5 – Use Case A					
Level of depth					
High level use case					
Prioritization					
high					
Generic, regional or national relation					
Regional					
Nature of the use case					
Technical/Social					
Further keywords for classification					
Smart grid, electric vehicles, charging stations, CPO, DSO, flexibility					

7.9.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

Diagram(s) of use case				

7.9.3 Technical details

7.9.3.1 Actors

Actors							
Grou	ping	Group description					
Harmonized electricity marl	ket role	The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.					
Actor name	Actor type	Actor description	Further information specific to this use case				
System Operator	Role	A party responsible for operating, ensuring the maintenance of and, if necessary, developing the system in a given area and, where applicable, its interconnections with other systems, and for ensuring the long-term ability of the system to meet reasonable demands for the distribution or transmission of electricity.	ASM Terni				
Energy Service Company		A party offering energy-related services to the Party Connected to Grid, but not directly active in the energy value chain or the physical infrastructure itself. The Energy Service Company (ESCO) may provide insight services as well as energy management services.	Charge Point Operator				
Party Connected to the Grid		A party that contracts for the right to take out or feed in energy at an Accounting Point.	Charging station				

Consumer	A party that consumes	EV users
	energy.	

Actors							
Group	ping	Group de	Group description				
Information	n Systems						
Actor name	Actor type	Actor description	Further information specific to this use case				
Connector of System Operator	System	Connects the Grid Operator/System Operator to the data space.					
Analysis systems of System Operator System		Analyse given data in order to provide RES generation forecast and more.					
Charging Point System	System	Manages all actions to load the EV.					
Connector Charging Point Operator	System						
Electric Mobility Platform	System	CPO system that hosts EV users and collects electric vehicles and charging stations data. Communicate also with DSO for grid congestion management.					
Charging stations		Deployed devices suitable for EV charging					

7.9.3.2 References

	References									
No.	References Type	Reference			Originator / organization	Link				

7.9.4 Step by step analysis of use case

7.9.4.1 Overview of scenarios

	Scenario conditions								
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre- condition	Post- condition			
1	Grid monitoring	Grid/System Operator collects smart meter data and identifies congestion problem	Grid/System Operator	Forecast will be calculated every day	be constantly	schedule			
2	Charging schedule notification	Based on forecast data, Grid/System Operator sends a charging schedule to CPO	Grid/System Operator	Forecast system indicates a potential congestion problem to be mitigated	with the	A charging schedule request is created in the electric mobility platform			
3	EV users involvement	Based on charging schedule provided by DSO, CPO asks to EV users their availability	CPO EV drivers		connected	Smart contracts between DSO and CPO is signed and charging schedule is settled			

		to comply with provided charging schedule				
4	congestion problem avoided	Coordination between DSO and CPO involves solving grid congestion problem	EV drivers	their electric vehicles according with charging	stations are remotely controllable by CPO	Grid congestion is avoided and P2P micro payments are executed

7.9.4.2 Steps-Scenarios

	Scenario										
Scenario name :		Grid Monitor	Grid Monitoring								
Step No.	Event	Name of process/activity	Description of process/ activity	Service	Information producer (actor)	Information receiver (actor)	Information Exchanged (IDs)	Requirement, R-IDs			
1.1	Get meter data	Get meter data	In order to keep the energy distribution service running, DSO monitors power grid, collecting meter data	GET	DSO	АМІ					
1.2	Meter data	Meter data	AMI provides smart meter energy data	REPORT	AMI	DSO	I-1	P5B-F-05 P5B-F-06 P5B-NF-06 P5B-NF-07			
1.3	Grid forecasting	Grid forecasting	DSO executes grid forecasting in order to identify potential congestion problems	EXECUTE	DSO	DSO	1-4	P5B-F-12 P5B-NF-06 P5B-NF-07			

	Scenario Sce								
Scena	rio name :	Charging sched	dule notification						
Step No.	Event	Name of process/activity	Description of process/ activity	Service	Information producer (actor)		Information Exchanged (IDs)	Requirement, R-IDs	
2.1	Charging schedule request	schedule	DSO creates a charging schedule request on the electric mobility platform	CREATE		Electric Mobility Platform	I-5	P5B-F-13 P5B-NF-06 P5B-NF-07	

2.2	Request	Request	Electric mobility platform	CHANGE	Electric	СРО	I-5	
	notification	notification	notify to CPO about new		Mobility			
			charging schedule request		Platform			

				Scena	rio			
Scena	rio name :	EV users involv	rement					
Step No.	Event	Name of process/activity	Description of proce activity	ess/Service	Information producer (actor)	Information receiver (actor)	Information Exchanged (IDs)	Requirement, R-IDs
3.1	inspection and most appropriate EV users selection	inspection and most appropriate EV users selection		d s to	СРО	СРО	I-3 I-4	P5B-F-04 P5B-F-10 P5B-NF-06 P5B-NF-07
3.2	Ask for availability	availability	CPO contacts identified EV users to ask for their availability to charge in specific time and parking place	/ GET	СРО	EV users	I-5	P5B-F-13 P5B-NF-06 P5B-NF-07
3.3	Return availability		EV users provide their availability	REPORT	EV users	СРО	I-5	
3.4	Schedule	Schedule	CPO confirms charging schedule in the electric mobility platform	REPORT	СРО	Electric Mobility Platform	I-5	P5B-F-13 P5B-NF-06 P5B-NF-07
3.5	Smart contract		Electric mobility platform notify to DSO charging schedule confirmation and	EXECUTE	Electric Mobility Platform	DSO CPO		

	smart contract is executed			
	between DSO and CPO			

				Scenar	io			
Scena	rio name :	Grid congesti	on problem avoided					
Step No.	Event	Name of process/activity	Description of process/ activity	Service	Information producer (actor)	Information receiver (actor)	Information Exchanged (IDs)	Requirement, R-IDs
4.1	EV charging	EV charging	EV users connect electric vehicles to charging stations and charging sessions are performed	EXECUTE	EV users	Charging stations	I-1 I-2	P5B-F-03 P5B-F-09 P5B-NF-06 P5B-NF-07
4.2	P2P trading	P2P trading	DSO remunerates CPO for service provided	EXECUTE	DSO	СРО		
4.3	P2P trading	P2P trading	EV users remunerates CPO for EV charging provided	EXECUTE	EV users	СРО		

7.9.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

Information exchanged							
Information	Name of	Description of information	Requirement, R-IDs				
exchanged	information	exchanged					
(ID)							
I-1	Smart meter data	Smart meter ID	P5B-F-05				
		Energy	P5B-F-06				
		Timestamp	P5B-NF-06				
			P5B-NF-07				
I-2	Charging station	Charging Station ID	P5B-F-03				
	data	Power Output	P5B-F-09				
		Socket ID	P5B-NF-06				
		Socket Status	P5B-NF-07				
		Charging Session ID					
		Start Time					
		End Time					
		Energy					
		Cost					
I-3	Electric vehicle data	Electric Vehicle ID	P5B-F-04				
		Electric Vehicle Model	P5B-F-10				
		Connector Type	P5B-NF-06				
		Battery Capacity	P5B-NF-07				
		Battery Power					
		Timestamp					
		SoC					
		Speed					
		Kilometers Autonomy (It is the					
		actual kilometers that EV can do					
		with actual SoC level)					
		Odometer					
I-4	Forecasting data	Energy	P5B-F-12				
		Time	P5B-NF-06				
			P5B-NF-07				
I-5	Charging schedule	Energy	P5B-F-13				
	data	Time	P5B-NF-06				
			P5B-NF-07				

7.9.6 Requirements

Requirements			
Categories ID	Category name for requirements	Category description	
F	Functional	Functional requirements	
Requirement R-ID	Requirement name	Requirement description	
P5B-F-01	Electric Mobility Platform	A platform hosting charging station managers and EV owners shall be implemented and deployed	
P5B-F-02	EV user registration	Electric mobility platform shall be enabled for user registrations	
P5B-F-03	Charging Station Identifier	As there will be more than one charging station involved in the trial, each individual charging station must have its own unique identifier	
P5B-F-04	Electric Vehicle Identifier	As there will be more than one electric vehicle involved in the trial, each individual electric vehicle must have its own unique identifier	
P5B-F-05	Electric Meter Identifier	As there will be more than one electric meter involved in the trial, each individual electric vehicle must have its own unique identifier	
P5B-F-06	Smart Meter	Smart meter must be connected to internet	
P5B-F-07	Smart Charging Station	Charging station must be connected to internet	
P5B-F-08	Smart Electric Vehicle	Electric vehicle must be connected to internet	
P5B-F-09	Charging Station Data	Charging station must provide energy data; data shall be stored for result evaluation	
P5B-F-10	Electric Vehicle Data	Electric vehicle must provide energy data; data shall be stored for result evaluation	
P5B-F-11	Electric Mobility Interoperability	Platform must ensure interoperability between charging station and an electric vehicle to ensure the charging session execution	

P5B-F-12	Energy Forecast	DSO shall be able to forecast electricity production/consumption and estimate flexibility need	
P5B-F-13	Charging Schedule Mechanism	DSO must be able to select the charging stations to be involved for grid congestion solving and provide charging schedule request	
P5B-F-14	Smart Contract	Electric mobility platform must be able to execute smart micro-contracts	
P5B-F-15	Micro-Payment	Electric mobility platform must be able to process micro-payments	

	Requirements		
Categories ID	Category name for requirements	Category description	
NF	Non-Functional	Non-Functional requirements	
Requirement R-ID	Requirement name	Requirement description	
P5B-NF-01	Electric Mobility Platform Reliability	Electric Mobility platform shall be capable to manage multiple users without affecting its performance	
P5B-NF-02	Electric Mobility Platform OS	Electric Mobility platform shall be portable. So, moving from one OS to other OS does not create any problem	
P5B-NF-03	Electric Mobility Platform Login Latency	Electric Mobility platform login shall be processed by 3 seconds	
P5B-NF-04	Charging Station Latency	Charging station ping shall be under 200 ms	
P5B-NF-05	Electric Vehicle Latency	Electric vehicle ping shall be under 200 ms	
P5B-NF-06	Data Reliability	Data shall be consistent, reliable, transparent and accessible only to authorized users	
P5B-NF-07	Data Accessibility	Store data in a safe and tamperproof manner	

7.9.7 Common terms and definitions

Common Terms and Definitions		
Term	Definition	
AMI	Advanced Metering Infrastructure	
DISO Distribution Service Operator		

СРО	Charging Point Operator
EV	Electric Vehicle
P2P	Peer-to-peer

- 7.10 Pilot 5 Use Case 5c Flexibility provision for electricity grid with water pumps and predictive maintenance of the pumps
 - 7.10.1 Description of the Use Case

7.10.1.1 Name of the use case

Use case identification			
ID Area / Do- main(s)/ Zone(s) [OPTIONAL]		Name of the use case	
P5-IT-C		Flexibility provision for electricity grid with water pumps and predictive maintenance of the pumps	

7.10.1.2 Version management

	Version management					
Version No.	Date	Name of author(s)	Changes	Approval status		
0.1		Linda Rülicke, Volker Berkhout, Marie Eberhard	Initial creation			
0.2						

7.10.1.3 Scope and objectives of use case

Scope and objectives of use case			
The second se	Exploiting new services for sustainable management of water distribution systems which are also beneficial for optimizing grid operations.		
Objective(s)	 Increase the efficiency of the grid by using flexibility of the water network and water pumps Forecasting water demand variations using the real time data and historical data available. 		
	Increased efficiency in grid operation by tapping the flexibility potential of water pumps, reduce cost of water system operations through water demand forecasting and electricity consumption in lower price periods		

7.10.1.4 Narrative of Use Case

Narrative of Use Case

Short description

In the morning when everyone gets ready for the day, the water consumption is high, in the night the water consumption decreases by 80 percent. That means at night pressure at the source can be reduced while still allowing customers to have sufficient tap pressure. Our water distribution network manage their operation on the instant water demand of the network, meaning that the use of the equipment is conditioned by the immediate water necessity. Water demand forecasting is crucial for the sustainable management of water distribution systems. It is directly related to a supply service with reduced operating costs, such as the electric energy required for pumping and plays an important role in the optimal performance of pumps. Water demand prediction which is crucial to have optimal water demand balance, minimise overpressure and consequently achieve water and energy savings.

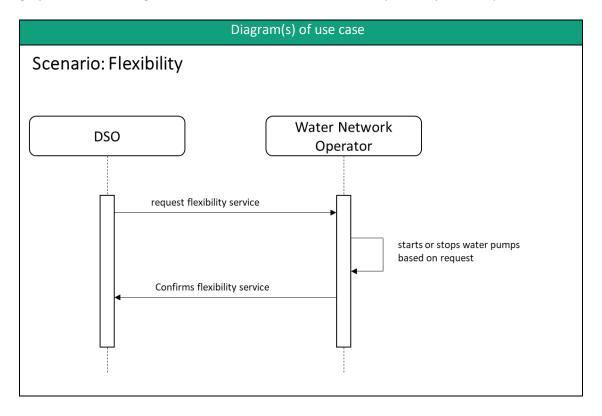
7.10.1.5 Key performance indicators (KPI)

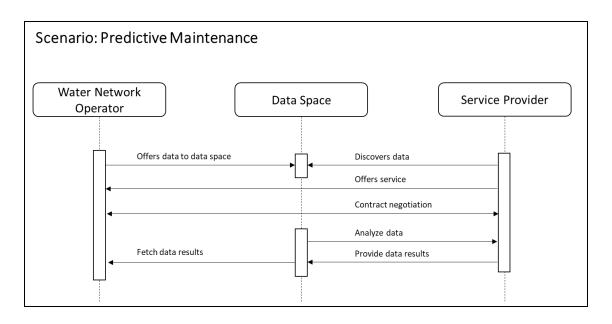
Key performance indicators (KPI)				
ID	Date	Description	Reference to mentioned use case objectives	
5C_1		Reduction of power peaks		
5C_2		Maintaining sufficient tap pressure throughout the day		

7.10.1.6 Use case conditions

Use case conditions	
Assumptions	
Technology will be provided by the technical partners	
Prerequisites	
Sensors for monitoring parameters for forecasting the water demand variation	

7.10.1.7 Further information to the use case for classification / mapping




Classification information			
Relation to other use cases			
None			
Level of depth			
High-Level Use Case (HLUC)			
Prioritization			
Regular			
Generic, regional or national relation			
Generic			
Nature of the use case			
System			
Further keywords for classification			
Water pumps, flexibility,			

7.10.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.10.3 Technical details

7.10.3.1 Actors

Actors					
Group	ping	Group de	Group description		
Harmonized electricity market role		The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.			
Actor name	Actor type	Actor description	Further information specific to this use case		
System Operator	Role	A party responsible for operating, ensuring the maintenance of and, if necessary, developing the system in a given area and, where applicable, its interconnections with other systems, and for ensuring the long-term ability of the system to	ASM Terni		

	meet reasonable demands for the distribution or transmission of electricity.	
Energy Service Company	A party offering energy- related services to the Party Connected to Grid, but not directly active in the energy value chain or the physical infrastructure itself. The Energy Service Company (ESCO) may provide insight services as well as energy management services.	ENG
Party Connected to the grid	A party that contracts for the right to take out or feed in energy at an Accounting Point.	Water network operator

	Actors						
Grouping	;	Group description					
Data space role	model	Roles from the data value chain that can be ta non-energy actors.	ken by energy and				
Actor name	Actor type	Actor description	Further information specific to this use case				
Data Owner	Role. IDS / GAIA-X	Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self- sovereign control over the data.					
Data Provider	Role. IDS / GAIA-X	Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.					

Data Consumer	Role. IDS	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.	
Service Consumer	Role. GAIA-X	Services are offered by a Service Provider and consumed by a Service Consumer.	

	Actors						
Grou	oing	Group de	scription				
Informatio	n Systems						
Actor name	Actor type	Actor description	Further information specific to this use case				
Connector of System Operator	System	Connects the Grid Operator/System Operator to the data space.					
Analysis systems of System Operator	System	Analyze given data in order to provide RES generation forecast and more.					
Connector of Water Network Operator	System	Connects the water network operator to the data space.					
Forecasting Service for Water Network Operator	System	Provides forecast for water demand to Water network operator					

7.10.3.2 References

	References						
No.	References Type	Reference			Originator / organization	Link	

7.10.4 Step by step analysis of use case

7.10.4.1 Overview of scenarios

	Scenario conditions								
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre- condition	Post- condition			
	Flexibility	In the flexibility scenario the DSO requests the water network operator to consume energy in case of network congestion							
	Predictive Maintenance	The predictive maintenance analysis shall identify maintenance need for water pumps to increase lifetime							

7.10.4.2 Steps-Scenarios

	Scenario								
Scenari o name:									
Step No.	Event	of process	Description of process/activity	Service	Informationproduc er (actor	n	Informati on exchange d (IDs)	t,	

	activity				
1		Forecast electrical power and loads	System operator		P5C -F-02
2	Flexibilit y demand	Announce request to use water pumps to provide flexibility	System operator	I-1	
3	Flexibilit y offer	Water grid provider determines possible power that can be shifted	Water network operator	I-2	
4	y contract	Confirmati on by system operator to use the power accordingly	System operator		
5	y provisio n	Water grid provider uses pumps according to previous agreement	Water network operator		P5C -F-03

	Scenario								
Scanar	Scenar Predictive Maintenance								
io	rreak	cive iviali	iteriance						
name:									
Step	Event	Name	Doscriptio	Sorvic	Informationprodu	Informatio	Informati	Poquiromon	
•	Event							requirement	
No.		OŤ	n of	e	cer , .		on	τ,	
		process	process/		(actor	receiver	exchange	R-IDs	
		activity	activity			(actor)	d		
							(IDs)		

1	Data	Water grid	Water grid operator		I-3	P5C-F-01
	provision	operator offers data	G ,			
		via data space				
2	Service offering	Energy Service	Energy Service Company	Water grid operator		
		Company offers				
		smart predictive				
		maintenanc				
		e service at data space				
3	Contract agreemen	Water grid	Water grid operator	Energy Service		
	t	and smart		Company		
		service				
		provider agree on				
		contract				
4	Data analysis	Energy Service	Energy Service Company			
	allalysis	Company is	Company			
		conducting				
		predictive maintenanc				
		e				
5	Result	Energy	Energy Service		I-4	
	distributi on	Service Company	Company	operator		
		distributes				
		the results				
		back with limited				
		access				
		rights to				
		allow only water				
		network				
		operator to				
		see the data				

7.10.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

	Information exchanged						
Information exchanged, ID	information	Description of information ex- changed	Requirement, R-IDs				
I-1	FlexDemand	Demand of flexibility					
I-2		Potential flexibility from water network to be provided					
I-3	'	SCADA data of water pumps in network					
1-4		Results of predictive maintenance analysis					

7.10.6 Requirements

Requirements						
Categories ID	Category name for requirements	Category description				
F	Functional	Functional requirements				
Requirement RID	Requirement name	Requirement description				
P5C-F-01	Edge management	Pre-process smart meter data in order to increase data quality				
P5C -F-02		Forecast the consumption and generation in the distribution system for a given time				
P5C -F-03		Optimize the operation of the grid with the available flexibility information				

	Requirements	
Categories	Category name for requirements	Category description
ID		

NF	Non-Functional	Non-Functional requirements		
Requirement R-ID	Requirement name	Requirement description		
P5C-NF-01	,	Data shall be consistent, reliable, transparent and accessible only to authorized users		
P5C -NF-02	1	Grant access to data in accordance with usage policies and access rights		
P5C -NF-03	. ,	Code should be well documented and understandable		
P5C -NF-4	· · · · · · · · · · · · · · · · · · ·	Visualizations should be well understandable and interpretable		
P5C -NF-5	Elapsed time response requirements for exchanging data	Less than 1 minute		

7.10.7 Common terms and definitions

Common terms and definitions				
Term	Term Definition			

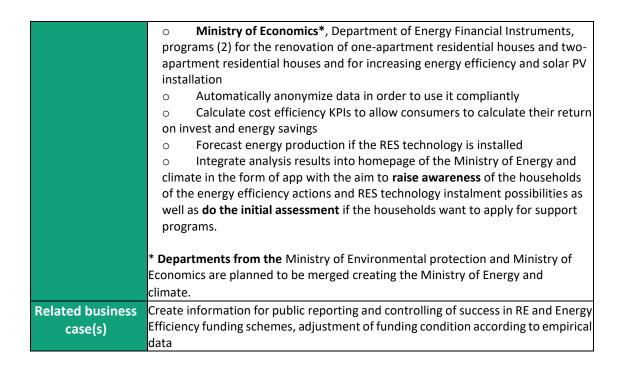
7.11 Pilot 6

This pilot is currently subject to change. The use case description will be added in an updated version of this document.

- 7.12 Pilot 7 Use case 7 Cross-value chain services for energydata driven green financing
 - 7.12.1 Description of the Use Case
- 7.12.1.1 Name of the use case

Use case identification				
ID	Area / Do- main(s)/ Zone(s) [OPTIONAL]	Name of the use case		
P7-LV		Cross-value chain services for energy-data driven green financing		

7.12.1.2 Version management


	Version management					
Version No.	Date	Name of author(s)	Changes	Approval status		
0.1	17.10.2022	Linda Rülicke, Volker Berkhout, Marie Eberhard Aija Zucika, Iveta Muceniece				

7.12.1.3 Scope and objectives of use case

Scope and objectives of use case				
Scope	Green financing for energy efficiency services for strengthening debt and equity financing of energy efficiency investments, providing investors and project developers the opportunity to easily evaluate key performance indicators of future projects. The scope of this use case stems from the need of providing innovative services which will be based on Data Spaces, counting on cross-value chain stakeholder data-driven services, at the interplay among smart meters data and financing.			
Objective(s)	 Make the data from two financing schemes for renewable energy and energy efficiency calls available to the dataspace: Ministry of Environmental protection*, Latvian environmental investment fund: EKII-6 (Call) Reducing greenhouse gas emissions from households - support for the use of renewable energy sources 			

7.12.1.4 Narrative of Use Case

Narrative of Use Case

Short description

The aim of this pilot is to create a solid framework through cross-sectoral integration of data on financial performance of energy efficiency projects. The scope is to strengthen debt and equity financing of energy efficiency investments, providing investors and project developers the opportunity to easily evaluate key performance indicators of future projects. Besides traditional AI-based green financing analytics services, in the context of this pilot the evaluation of energy data sharing to other sectors and the exploitation of how this pilot concept should evolve to become a more generic data sharing solution will be further investigated.

Complete description

7.12.1.5 Key performance indicators (KPI)

	Key performance indicators (KPI)					
ID	Date		Reference to mentioned use case objectives			
07-2	01.01.2025.	Number of non-energy sectors that benefit from data space	Water; electrical			

1-SO2	01.03.2025.	% of cost reduction in the energy bill for individuals / consumers	Households
2-ET1		% increase of data assets accessible and reusable through the Data Space	Open data sets from the financial instruments
2-SO1		% of carbon emission reduction due to energy efficiency and energy consumption advices services and non-energy services which leverage on larger shares of energy data accessible and reusable	Indirectly
6-ET2	01.03.2025.	Energy system cost reduction	Households

7.12.1.6 Use case conditions

Use case conditions

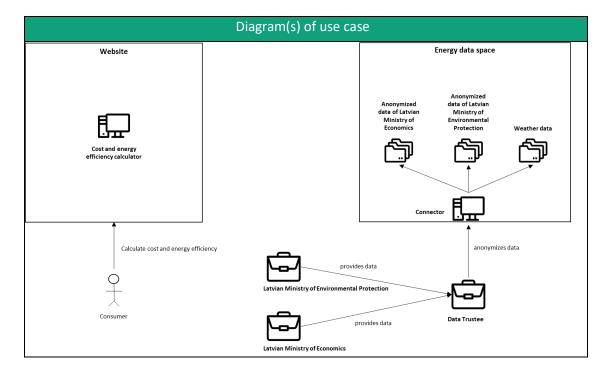
Assumptions

- Weather data is available under an Open Data License.
- Data on energy efficiency and/or Solar PV instalment projects (300) are available (programs (2) for the renovation).
- Equipment data will be available as data stream in mid 2023 (EKII call).
- Static equipment(master data) data is available

Prerequisites

7.12.1.7 Further information to the use case for classification / mapping

Classification information Relation to other use cases (include, extend, invoke, or associate) Level of depth High – Level Use Case (HLUC) Prioritization Mandatory Generic, regional or national relation National Nature of the use case Process Further keywords for classification



PV forecast, anonymization, funding scheme, reporting, public relations

7.12.2 Diagrams of use case

In this section of the use case template, diagrams of the use case are provided as UML graphics. The drawing should show interactions which identify the steps where possible.

7.12.3 Technical details

7.12.3.1 Actors

Actors			
Grouping	Group description		
Harmonized electricity market role	The Role Model has been developed in order to facilitate the dialogue between the market participants from different countries through the designation of a single name for each role and domain that are prevalent within the electricity market. Its focus is essentially to enable a common terminology for IT development.		

Actor name	Actor type	Actor description	Further information specific to this use case
Consumer	Role	A party that consumes electricity	This is a Type of Party Connected to the Grid.
Market Information Aggregator	Role	A party that provides market related information that has been compiled from the figures supplied by different actors in the market. This information may also be published or distributed for general use.	LEIF
Energy Service Company	Role	A party offering energy-related services to the Party Connected to Grid, but not directly active in the energy value chain or the physical infrastructure itself. The Energy Service Company (ESCO) may provide insight services as well as energy management services.	NTUA

Actors				
Grouping	:	Group description		
Data Space Role Model		Roles from the data value chain that can be taken by energy and non-energy actors.		
Actor name	Actor type	Actor description	Further information specific to this use case	
Data Owner	Role. IDS	Original author or legal owner of a Data Asset. A Data Asset has a usage license. Further, the Data Owner can attach Usage Control Policies to restrict access and use. In that sense, the Data Owner retains self- sovereign control over the data.		

Data Provider	Role. IDS	Makes data available for being exchanged between a Data Owner and a Data Consumer. The Data Provider is in most cases identical with the Data Owner, but not necessarily.	
Data Consumer	Role. IDS	The Data Consumer receives data from a Data Provider. From a business process modeling perspective, the Data Consumer is the mirror entity of the Data Provider; the activities performed by the Data Consumer are therefore similar to the activities performed by the Data Provider.	
Service Consumer		Services are offered by a Service Provider and consumed by a Service Consumer.	

	Actors							
Group	oing	Group de	scription					
Informatio	n Systems	Technology systems that s data	send, edit, save or delete					
Actor name	Actor type	Actor description	Further information specific to this use case					
Market Information Aggregator Connector	System	Connects the Market Information Aggregator to the data space.						
Energy Service Provider Connector	System	Connects the Energy Service Provider to the data space						

7.12.3.2 References

			Re	eferences		
No.	References Type	Reference	Status	Impact on use case	Originator / organization	Link

7.12.4 Step by step analysis of use case

7.12.4.1 Overview of scenarios

			Scenario con	ditions		
No.	Scenario name	Scenario description	Primary actor	Triggering event	Pre- condition	Post- condition
1	Anonymization	Anonymize the provided data in order to protect privacy rights of citizens participating in the funding calls	Aggregator			
2	PV forecast		Energy Service Company			
3	Cost and energy efficiency calculation		Energy Service Company			

7.12.4.2 Steps-Scenarios

	Scenario							
Scenari o name:								
Step No.	Event	Name of process activity	Descriptio n of process/ activity	Service	n	receiver (actor)	Informatio n exchanged (IDs)	Requirement , R-IDs

1	Data Provision	Provide data to Energy Service Company	Market Information Aggregator		l-1-l-22	
2	Anonymizatio n	Anonymize provided data based on defined parameter s	Energy Service Company		l-1-l-22	P7-F-02
3	Data Space Data Provision	Provide anonymize d data to data space with open usage policy	Energy Service Company	Open	l-25	P7-F-03

	Scenario							
Scenari o name:	PV for	ecast						
Step	Event	Name	Descripti	Service	Informationproduc	Informatio	Informati	Requiremen
No.		of	on of		er	n	on	t,
		process	process/		(actor	receiver	exchange	R-IDs
		activity	activity			(actor)	d (IDs)	
1			Consumer		Consumer			
		er input						
		data	data on					
			location					
			and planned					
			PV asset					
			capacity					
2		Data	Access		Energy Service		I-23	P7-F-01
		Access	weather		Company			
			data via					
			energy					
			data					
3		Forecast	space Forecast a		Energy Service		I-24	P7-F-05
3		orecast	range of		Company		- - - - - - - - - - - - -	F / -F - U3
			realistic		Company			
			energy					

		productio n of PV modules for one year			
4	to data space		Energy Service Company	I-24	P7-F-07

					Scenario			
Scenari o name:	Cost a	nd energy	efficiency o	calculatio	on on homepage			
Step	Event	Name	Descripti	Servic	Informationproduc	Informatio	Informati	Requiremen
No.			on of process/ activity	e	er (actor	n receiver (actor)	on exchange d (IDs)	t, R-IDs
1		r input data	Consumer inserts data for cost and energy efficiency calculation			Energy Service Company	11-115	
2		calculatio n	Calculate efficiency gains and associated costs.		Energy Service Company			
3			Provide results on a website		Energy Service Company	Consumer	I-1 – I-22	P7-F-04

7.12.5 Information exchanged

These information objects are corresponding to the "Name of Information" of the "Information Exchanged" column referenced in the scenario steps in template section 4 "Step by Step Analysis". If appropriate, further requirements to the information objects can be added.

		Information exchanged	
Information	Name of	Description of	Requirement, R-IDs
exchanged,	information	information	
ID		ex- changed	
I-1		Average daytime outdoor	
. –	Mean temperature	temperature in several cities	
	·	in Latvia	
I-2		One time information about	
	Power of technology	technology and power	
		installed	
I-3	Electricity	energy consumption by	
	consumption in	homeowner	
	household	nomeowner	
1-4	Electricity	energy production by	
	production by solar	homeowner	
	PV		
I-5	Initial Energy	One time information about	
	efficiency class	existing situation before the	
1.6	Initial Thermal	project realization	
I-6		One time information about	
	for heating	existing situation before the project realization	
I-7	Initial Energy	One time information about	
-7	consumption	existing situation before the	
	Consumption	project realization	
I-8	Initial Assessment of	One time information about	
	carbon dioxide	existing situation before the	
	emissions	project realization	
I-9	Initial heat energy	One time information about	
	consumption	existing situation before the	
		project realization	
I-10	Carrying out	Implemented activities	
	construction works		
	in the enclosing		
	structures		
I-11	Renovation or	Implemented activities	
	reconstruction of		
	engineering systems		
	(for example,		
	heating and		
	ventilation		
1.12	equipment)	Incoming a part of the second	
I-12		Implemented activities	
	water heating		
I-13	system Installation of heat	Implemented activities	
1-12	installations to	implemented activities	
	ווואנמוומנוטווא נט		

·		
from renewable		
energy sources		
Other activities, if	Implemented activities	
they are necessary		
for increasing energy		
efficiency together		
with the above-		
mentioned		
measures		
Other activities	Implemented activities	
Final Energy efficiency class	After the renovation	
·	After the renovation	
consumption for		
heating		
Final Energy	After the renovation	
= :		
Final Assessment of	After the renovation	
carbon dioxide		
emissions		
Final heat energy	After the renovation	
consumption		
Final building energy	After the renovation	
costs		
Final building	After the renovation	
technical		
parameters		
Open Weather Data		
Latvia		
Energy Production	Forecast based on AI	
Forecast of PV-	algorithms that forecasts	
modules	the energy production of PV	
	modules	
Anonymized data	The dataset is based on the	
set	information ID I-1 to I-22. It	
	is anonymized to protect	
	I	
	-	
	citizens	
	Other activities, if they are necessary for increasing energy efficiency together with the abovementioned measures Other activities Final Energy efficiency class Final Thermal energy consumption for heating Final Energy consumption Final Assessment of carbon dioxide emissions Final heat energy consumption Final building energy costs Final building technical parameters Open Weather Data Latvia Energy Production Forecast of PV-modules Anonymized data set	production of heat from renewable energy sources Other activities, if they are necessary for increasing energy efficiency together with the above- mentioned measures Other activities Implemented activities Final Energy efficiency class Final Thermal energy consumption for heating Final Energy consumption Final Assessment of carbon dioxide emissions Final heat energy consumption Final building energy consumption Final building After the renovation Final building After the renovation Forecast of PV- modules Anonymized data Implemented activities Implemented activities After the renovation After the renovation After the renovation Forecast based on Al algorithms that forecasts the energy production of PV modules The dataset is based on the

7.12.6 Requirements

	Requirements	
Categories ID	Category name for requirements	Category description
F	Functional	Functional requirements
Requirement R-ID	Requirement name	Requirement description
	Provide open weather data to the data space	
P7-F-02	·	The provided raw data shall be anonymized to protect privacy rights of Latvian citizens, who participated in the funding programs.
P7-F-03	Provide anonymized data to the data space as Open Data	The anonymized data shall be made available via the data space
P7-F-04	calculator	The energy and cost calculator shall be integrated on the website in order to enable users to calculate financial KPIs for their investment.
P7-F-05	Calculate PV-forecast with ML	
P7-F-06	Provide forecast data to the data space	

	Requirements	
Categories ID	Category name for requirements	Category description
NF	Non-Functional	Non-Functional requirements
Requirement R-ID	Requirement name	Requirement description
P7-NF-01	Data Reliability	Data shall be consistent, reliable, transparent and accessible only to authorized users
P7-NF-02	Data Accessibility	Store data in a safe and tamperproof manner
P7-NF-03	Data Protection	Handle personal data according to GDPR guidelines
P7-NF-04	Code quality	Code should be well documented and understandable
P7-NF-05	Visualisation interpretability	Visualizations should be well understandable and interpretable
P7-NF-06	Elapsed time response requirements for interaction of the web application	Less than 30 seconds

P7-NF-07	Commonly used techniques for meeting	Failure detection; Automatic restart;
	quality of service requirements of this data	Automatic failover to second source of data
	exchange	or function; Automatic failover of
		communication channels to secondary
		channel; Backup of data
		Transaction rollback;

7.12.7 Common terms and definitions

Common terms and definitions			
Term	Definition		